-
Notifications
You must be signed in to change notification settings - Fork 2
/
main
641 lines (539 loc) · 28 KB
/
main
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
#! /usr/bin/env python
from __future__ import print_function
import argparse
from array import array
import itertools
import os
import shutil
import sys
import tempfile
import pickle
import operator
from collections import defaultdict, deque
from modules import help_functions, GraphGeneration, batch_merging_parallel, IsoformGeneration, SimplifyGraph
D = {chr(i) : min( 10**( - (ord(chr(i)) - 33)/10.0 ), 0.79433) for i in range(128)}
def write_batch(reads,outfolder,batch_pickle):
this_batch_dict = {}
for id, (acc, seq, qual) in reads.items():
this_batch_dict[acc] = seq
pickle_batch_file = open(os.path.join(outfolder, batch_pickle), 'wb')
pickle.dump(this_batch_dict, pickle_batch_file)
pickle_batch_file.close()
def get_read_lengths(all_reads):
"""Helper method which extracts the read lengths from all_reads. We will use those during the graph generation to appoint more meaningful information to the node't'
INPUT: all_reads: dictionary which holds the overall read infos key: r_id, value tuple(readname, sequence, some info i currently don't care about)
OUTPUT: readlen_dict: dictionary holding the read_id as key and the length of the read as value
"""
readlen_dict = {}
for r_id, infos in all_reads.items():
seq = infos[1]
seqlen = len(seq)
readlen_dict[r_id] = seqlen
return readlen_dict
def eprint(*args, **kwargs):
print(*args, file=sys.stderr, **kwargs)
def remove_read_polyA_ends(seq, threshold_len, to_len):
"""
Funtion that removes the polyA_ends from the reads. We remove all polyAtails longer than threshold_len by transforming them into polyA strings of length to_len.
INPUT: seq: the sequence to be altered
threshold_len: the length threshold over which we alter the polyA sequences
to_len: the length of the poly_A tails after the alteration
OUTPUT: seq_mod: the sequence that has been modified by the function, i.e. the sequence with shortened polyA tails
"""
#we only want to alter polyA sequences that are located in the end of the read->calculate a window length in which we perform the change
end_length_window = min(len(seq)//2, 100)
seq_list = [ seq[:-end_length_window] ]
for ch, g in itertools.groupby(seq[-end_length_window:]):
h_len = sum(1 for x in g)
if h_len > threshold_len and (ch == "A" or ch == "T"):
seq_list.append(ch*to_len)
else:
seq_list.append(ch*h_len)
seq_mod = "".join([s for s in seq_list])
return seq_mod
def rindex(lst, value):
"""
Function that calculates the reverse index. We want to find the last (but still) smallest k-mer in the window not the first
INPUT: lst: the window of kmers as a list
value: the smallest kmer
OUTPUT: minimizer_pos: the last position of kmer with value in lst (not the first as before)
"""
return len(lst) - operator.indexOf(reversed(lst), value) - 1
def get_kmer_minimizers(seq, k_size, w_size):
# kmers = [seq[i:i+k_size] for i in range(len(seq)-k_size) ]
w = w_size - k_size
#save the window as a deque and instead of the sequence itself we use its hash value
window_kmers = deque([hash(seq[i:i+k_size]) for i in range(w +1)])
#the smallest kmer (or to be precise the smallest hash) we have found in the window
curr_min = min(window_kmers)
#we now want the last occurrence of the smallest kmer not the first anymore
minimizer_pos = rindex(list(window_kmers), curr_min)
#add the initial minimizer to minimizers
minimizers = [ (seq[minimizer_pos: minimizer_pos+k_size], minimizer_pos) ] # get the last element if ties in window
#iterate over the remaining read and find all minimizers therein
for i in range(w+1, len(seq) - k_size):
new_kmer = hash(seq[i:i+k_size])
# updating window
discarded_kmer = window_kmers.popleft()
window_kmers.append(new_kmer)
# we have discarded previous window's minimizer, look for new minimizer brute force
if curr_min == discarded_kmer and minimizer_pos < i - w:
curr_min = min(window_kmers)
minimizer_pos = rindex(list(window_kmers), curr_min) + i - w
minimizers.append( (seq[minimizer_pos: minimizer_pos+k_size], minimizer_pos) ) # get the last element if ties in window
# Previous minimizer still in window, we only need to compare with the recently added kmer
elif new_kmer < curr_min:
curr_min = new_kmer
minimizers.append( (seq[i: i+k_size], i) )
return minimizers
def get_kmer_maximizers(seq, k_size, w_size):
# kmers = [seq[i:i+k_size] for i in range(len(seq)-k_size) ]
w = w_size - k_size
window_kmers = deque([seq[i:i+k_size] for i in range(w +1)])
curr_min = max(window_kmers)
minimizers = [ (curr_min, list(window_kmers).index(curr_min)) ]
for i in range(w+1,len(seq) - k_size):
new_kmer = seq[i:i+k_size]
# updating window
discarded_kmer = window_kmers.popleft()
window_kmers.append(new_kmer)
# we have discarded previous windows minimizer, look for new minimizer brute force
if curr_min == discarded_kmer:
curr_min = max(window_kmers)
minimizers.append( (curr_min, list(window_kmers).index(curr_min) + i - w ) )
# Previous minimizer still in window, we only need to compare with the recently added kmer
elif new_kmer > curr_min:
curr_min = new_kmer
minimizers.append( (curr_min, i) )
return minimizers
def get_minimizers_and_positions_compressed(reads, w, k, hash_fcn):
# 1. homopolymenr compress read and obtain minimizers
M = {}
for r_id in reads:
(acc, seq, qual) = reads[r_id]
seq_hpol_comp = ''.join(ch for ch, _ in itertools.groupby(seq))
if hash_fcn == "lex":
minimizers = get_kmer_minimizers(seq_hpol_comp, k, w)
elif hash_fcn == "rev_lex":
minimizers = get_kmer_maximizers(seq_hpol_comp, k, w)
# indicies we want to take quality values from to get quality string of homopolymer compressed read
indices = [i for i, (n1,n2) in enumerate(zip(seq[:-1],seq[1:])) if n1 != n2]
indices.append(len(seq) - 1)
positions_in_non_compressed_sring = [(m, indices[p]) for m, p in minimizers ]
M[r_id] = positions_in_non_compressed_sring
return M
def get_minimizers_and_positions(reads, w, k, hash_fcn):
# 1. homopolymenr compress read and obtain minimizers
M = {}
for r_id in reads:
(acc, seq, qual) = reads[r_id]
if hash_fcn == "lex":
minimizers = get_kmer_minimizers(seq, k, w)
elif hash_fcn == "rev_lex":
minimizers = get_kmer_maximizers(seq, k, w)
M[r_id] = minimizers
return M
def get_minimizer_combinations_database(M, k, x_low, x_high,reads):
M2 = defaultdict(lambda: defaultdict(lambda: array("I")))
tmp_cnt = 0
forbidden = 'A'*k
for r_id in M:
minimizers = M[r_id]
for (m1,p1), m1_curr_spans in minimizers_comb_iterator(minimizers, k, x_low, x_high):
for (m2, p2) in m1_curr_spans:
if m2 == m1 == forbidden:
continue
tmp_cnt +=1
M2[m1][m2].append(r_id)
M2[m1][m2].append(p1)
M2[m1][m2].append(p2)
print(tmp_cnt, "MINIMIZER COMBINATIONS GENERATED")
avg_bundance = 0
singleton_minimzer = 0
cnt = 1
for m1 in list(M2.keys()):
for m2 in list(M2[m1].keys()):
#if the minimizer_pair is represented at more than one occurrence
if len(M2[m1][m2]) > 3:
avg_bundance += len(M2[m1][m2])//3
cnt += 1
#the minimizer_combination is only once in the data therefore does not yield viable information for the graph later on
else:
del M2[m1][m2]
singleton_minimzer += 1
#we also want to filter out minimizer combinations if they are too abundant (more than 3 times per read)
if len(M2[m1][m2]) // 3 > 3 * len(reads):
del M2[m1][m2]
print("Average abundance for non-unique minimizer-combs:", avg_bundance/float(cnt))
print("Number of singleton minimizer combinations filtered out:", singleton_minimzer)
return M2
def minimizers_comb_iterator(minimizers, k, x_low, x_high):
for i, (m1, p1) in enumerate(minimizers[:-1]):
m1_curr_spans = []
for j, (m2, p2) in enumerate(minimizers[i+1:]):
if x_low < p2 - p1 and p2 - p1 <= x_high:
m1_curr_spans.append((m2, p2))
# yield (m1,p1), (m2, p2)
elif p2 - p1 > x_high:
break
yield (m1, p1), m1_curr_spans[::-1]
def fill_p2(p, all_intervals_sorted_by_finish):
stop_to_max_j = {stop: j for j, (start, stop, w, _) in enumerate(all_intervals_sorted_by_finish) if start < stop}
all_choord_to_max_j = []
j_max = 0
for i in range(0, all_intervals_sorted_by_finish[-1][1] + 1):
if i in stop_to_max_j:
j_max = stop_to_max_j[i]
all_choord_to_max_j.append(j_max)
for j, (start, stop, w, _) in enumerate(all_intervals_sorted_by_finish):
j_max = all_choord_to_max_j[start]
p.append(j_max)
return p
def solve_WIS(all_intervals_sorted_by_finish):
# Using notation from https://courses.cs.washington.edu/courses/cse521/13wi/slides/06dp-sched.pdf
p = [None]
fill_p2(p, all_intervals_sorted_by_finish)
epsilon = 0.0001
# w - 1 since the read interval itself is included in the instance
v = [None] + [(w - 1)*(stop-start + epsilon) for (start, stop, w, _) in all_intervals_sorted_by_finish]
OPT = [0]
for j in range(1, len(all_intervals_sorted_by_finish) +1):
OPT.append( max(v[j] + OPT[ p[j] ], OPT[j-1] ) )
# Find solution
opt_indicies = []
j = len(all_intervals_sorted_by_finish)
while j >= 0:
if j == 0:
break
if v[j] + OPT[p[j]] > OPT[j-1]:
opt_indicies.append(j - 1) # we have shifted all indices forward by one so we neew to reduce to j -1 because of indexing in python works
j = p[j]
else:
j -= 1
return opt_indicies
def get_intervals_to_correct(opt_indicies, all_intervals_sorted_by_finish):
intervals_to_correct = []
for j in opt_indicies:
start, stop, weights, instance = all_intervals_sorted_by_finish[j]
intervals_to_correct.append((start, stop, weights, instance))
return intervals_to_correct
def batch(dictionary, size):
batches = []
sub_dict = {}
for i, (acc, seq) in enumerate(dictionary.items()):
if i > 0 and i % size == 0:
batches.append(sub_dict)
sub_dict = {}
sub_dict[acc] = seq
else:
sub_dict[acc] = seq
if i / size != 0:
sub_dict[acc] = seq
batches.append(sub_dict)
elif len(dictionary) == 1:
batches.append(sub_dict)
return batches
def grouper(iterable, n, fillvalue=None):
"Collect data into fixed-length chunks or blocks"
# grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx"
args = [iter(iterable)] * n
return itertools.zip_longest(*args, fillvalue=fillvalue)
def add_items(seqs, r_id, p1, p2):
seqs.append(r_id)
seqs.append(p1)
seqs.append(p2)
def find_most_supported_span(r_id, m1, p1, m1_curr_spans, minimizer_combinations_database, all_intervals, k_size, delta_len):
"""
Funtion that detects the most supported spans in the database and adds them to all_intervals.
INPUT: r_id: the id of the read we are workin on
m1: the length threshold over which we alter the polyA sequences
p1: the length of the poly_A tails after the alteration
m1_curr_spans:
minimizer_combinations_database:
reads:
all_intervals: list holding the interval information (empty at this point)
k_size:
delta_len:
OUTPUT: all_intervals: modified list of all intervals
"""
#print("Most_supp_span")
for (m2, p2) in m1_curr_spans:
relevant_reads = minimizer_combinations_database[m1][m2]
if len(relevant_reads)//3 >= 3:
seqs = array("I")
seqs.append(r_id)
seqs.append(p1)
seqs.append(p2)
for relevant_read_id, pos1, pos2 in grouper(relevant_reads, 3): #relevant_reads:
if r_id == relevant_read_id:
continue
elif abs((p2-p1)-(pos2-pos1)) < delta_len:
seqs.append(relevant_read_id)
seqs.append(pos1)
seqs.append(pos2)
all_intervals.append((p1 + k_size, p2, len(seqs)//3, seqs))
def main(args):
#Todo: add timestamp
print("ARGS",args)
all_batch_reads_dict={}
# start = time()
if os.path.exists("mapping.txt"):
os.remove("mapping.txt")
outfolder = args.outfolder
#sys.stdout = open(os.path.join(outfolder,"stdout.txt"), "w")
# read the file and filter out polyA_ends(via remove_read_polyA_ends)
all_reads = {i + 1: (acc, remove_read_polyA_ends(seq, 12, 1), qual) for i, (acc, (seq, qual)) in enumerate(help_functions.readfq(open(args.fastq, 'r')))}
max_seqs_to_spoa = args.max_seqs_to_spoa
if len(all_reads) <= args.exact_instance_limit:
args.exact = True
if args.set_w_dynamically:
args.w = args.k + min(7, int(len(all_reads) / 500))
delta_iso_len_3 = args.delta_iso_len_3
delta_iso_len_5 = args.delta_iso_len_5
work_dir = tempfile.mkdtemp()
print("Temporary workdirektory:", work_dir)
k_size = args.k
x_high = args.xmax
x_low = args.xmin
if args.parallel:
filename = args.fastq.split("/")[-1]
tmp_filename = filename.split("_")
tmp_lastpart = tmp_filename[-1].split(".")
p_batch_id = tmp_lastpart[0]
skipfilename = "skip"+p_batch_id+".fa"
for batch_id, reads in enumerate(batch(all_reads, args.max_seqs)):
new_all_reads = {}
if args.parallel:
batch_pickle = str(p_batch_id) + "_batch"
else:
skipfilename="skip"+str(batch_id)+".fa"
batch_pickle = str(batch_id) + "batch"
skipfilename = "skip" + str(batch_id) + ".fa"
skipfile = open(os.path.join(outfolder, skipfilename), 'w')
write_batch(reads, outfolder, batch_pickle)
skipfile=open(os.path.join(outfolder,skipfilename),'w')
if args.set_w_dynamically:
# Activates for 'small' clusters with less than 700 reads
if len(reads) >= 100:
w = min(args.w, args.k + (
len(reads) // 100 + 4))
elif len(reads) == 1:
for id, vals in reads.items():
(acc, seq, qual) = vals
skipfile.write(">{0}\n{1}\n".format(acc, seq))
print("Not enough reads to work on!")
continue
else:
w = args.k + 1 + len(reads) // 30
else:
w = args.w
#print("Window used for batch:", w)
iso_abundance = args.iso_abundance
delta_len = args.delta_len
graph_id = 1
print("Working on {0} reads in a batch".format(len(reads)))
hash_fcn = "lex"
not_used=0
#generate all minimizer combinations
if args.compression:
minimizer_database = get_minimizers_and_positions_compressed(reads, w, k_size, hash_fcn)
else:
minimizer_database = get_minimizers_and_positions(reads, w, k_size, hash_fcn)
minimizer_combinations_database = get_minimizer_combinations_database(minimizer_database, k_size, x_low,
x_high, reads)
previously_corrected_regions = defaultdict(list)
all_intervals_for_graph = {}
for r_id in sorted(reads):
print(r_id)
read_min_comb = [((m1, p1), m1_curr_spans) for (m1, p1), m1_curr_spans in
minimizers_comb_iterator(minimizer_database[r_id], k_size, x_low, x_high)]
if args.exact:
previously_corrected_regions = defaultdict(list)
read_previously_considered_positions = set(
[tmp_pos for tmp_p1, tmp_p2, w_tmp, _ in previously_corrected_regions[r_id] for tmp_pos in
range(tmp_p1, tmp_p2)])
if args.verbose:
if read_previously_considered_positions:
eprint("not corrected:", [(p1_, p2_) for p1_, p2_ in
zip(sorted(read_previously_considered_positions)[:-1],
sorted(read_previously_considered_positions)[1:]) if
p2_ > p1_ + 1])
else:
eprint("not corrected: entire read", )
if previously_corrected_regions[r_id]:
read_previously_considered_positions = set(
[tmp_pos for tmp_p1, tmp_p2, w_tmp, _ in previously_corrected_regions[r_id] for tmp_pos in
range(tmp_p1, tmp_p2)])
group_id = 0
pos_group = {}
if len(read_previously_considered_positions) > 1:
sorted_corr_pos = sorted(read_previously_considered_positions)
for p1, p2 in zip(sorted_corr_pos[:-1], sorted_corr_pos[1:]):
if p2 > p1 + 1:
pos_group[p1] = group_id
group_id += 1
pos_group[p2] = group_id
else:
pos_group[p1] = group_id
if p2 == p1 + 1:
pos_group[p2] = group_id
else:
read_previously_considered_positions = set()
pos_group = {}
all_intervals = []
prev_visited_intervals = []
#print("it over read_min_comb")
for (m1, p1), m1_curr_spans in read_min_comb:
#print(m1,", ", p1)
# If any position is not in range of current corrections: then correct, not just start and stop
not_prev_corrected_spans = [(m2, p2) for (m2, p2) in m1_curr_spans if not (
p1 + k_size in read_previously_considered_positions and p2 - 1 in read_previously_considered_positions)]
set_not_prev = set(not_prev_corrected_spans)
not_prev_corrected_spans2 = [(m2, p2) for (m2, p2) in m1_curr_spans if
(m2, p2) not in set_not_prev and (
p1 + k_size in pos_group and p2 - 1 in pos_group and pos_group[
p1 + k_size] != pos_group[p2 - 1])]
not_prev_corrected_spans += not_prev_corrected_spans2
if not_prev_corrected_spans: # p1 + k_size not in read_previously_considered_positions:
find_most_supported_span(r_id, m1, p1, m1_curr_spans, minimizer_combinations_database,
all_intervals, k_size, delta_len)
# add prev_visited_intervals to intervals to consider
all_intervals.extend(prev_visited_intervals)
if previously_corrected_regions[r_id]: # add previously corrected regions in to the solver
all_intervals.extend(previously_corrected_regions[r_id])
del previously_corrected_regions[r_id]
if not all_intervals:
not_used+=1
if DEBUG:
eprint("Found no reads to work on")
vals=reads[r_id]
(acc, seq, qual) = vals
skipfile.write(">{0}\n{1}\n".format(acc, seq))
continue
else:
all_intervals.sort(key=lambda x: x[1])
opt_indicies = solve_WIS(
all_intervals) # solve Weighted Interval Scheduling here to find set of best non overlapping intervals to correct over
intervals_to_correct = get_intervals_to_correct(opt_indicies[::-1], all_intervals)
#if we have found intervals in our read: add it to all_intervals_for_graph and give it a graph_id (an internal id)
if intervals_to_correct:
all_intervals_for_graph[graph_id] = intervals_to_correct
new_all_reads[graph_id] = reads[r_id]
graph_id += 1
#the read has no intervals in common with other reads-> we add it into skipfile
else:
not_used += 1
if DEBUG:
eprint("Found no reads to work on")
vals = reads[r_id]
(acc, seq, qual) = vals
skipfile.write(">{0}\n{1}\n".format(acc, seq))
if not_used>0:
print("Skipped ",not_used," reads due to not having high enough interval abundance")
else:
print("Working on all reads")
print("Generating the graph")
all_batch_reads_dict[batch_id] = new_all_reads
read_len_dict = get_read_lengths(all_reads)
#for key,value in all_intervals_for_graph.items():
# print(key,len(value))
#print(all_intervals_for_graph)
#profiler = Profiler()
#profiler.start()
#generate the graph from the intervals
#TODO: add timestamp
DG, reads_for_isoforms = GraphGeneration.generateGraphfromIntervals(
all_intervals_for_graph, k_size, delta_len, read_len_dict,new_all_reads)
#profiler.stop()
#profiler.print()
#test for cyclicity of the graph - a status we cannot continue working on -> if cyclic we get an error
#is_cyclic = SimplifyGraph.isCyclic(DG)
#if is_cyclic:
# k_size+=1
# w+=1
# print("The graph has a cycle - critical error")
#return -1
#else:
# print("No cycle in graph")
if DEBUG==True:
print("BATCHID",batch_id)
for id, value in all_batch_reads_dict.items():
for other_id,other_val in value.items():
print(id,": ",other_id,":",other_val[0],"::",other_val[1])
mode = args.slow
#profiler = Profiler()
#profiler.start()
#the bubble popping step: We simplify the graph by linearizing all poppable bubbles
SimplifyGraph.simplifyGraph(DG, new_all_reads, work_dir, k_size, delta_len, mode)
#profiler.stop()
#profiler.print()
#TODO: add delta as user parameter possibly?
delta = 0.15
print("Starting to generate Isoforms")
if args.parallel:
batch_id = p_batch_id
#profiler = Profiler()
#profiler.start()
#generation of isoforms from the graph structure
IsoformGeneration.generate_isoforms(DG, new_all_reads, reads_for_isoforms, work_dir, outfolder, batch_id, delta, delta_len, delta_iso_len_3, delta_iso_len_5, max_seqs_to_spoa)
#profiler.stop()
print("Isoforms generated-Starting batch merging ")
if not args.parallel:
print("Merging the batches with linear strategy")
#merges the predictions from different batches
#batch_merging_parallel.join_back_via_batch_merging(args.outfolder, delta, args.delta_len, args.delta_iso_len_3, args.delta_iso_len_5,
# args.max_seqs_to_spoa, args.iso_abundance)
print("removing temporary workdir")
#sys.stdout.close()
shutil.rmtree(work_dir)
DEBUG=False
#TODO: add low_output (bool) as well as delta as user parameters and remove slow, merge_sub_isoforms_3, merge_sub_isoforms_5
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="De novo error correction of long-read transcriptome reads",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s 0.3.7')
parser.add_argument('--fastq', type=str, default=False, help='Path to input fastq file with reads')
parser.add_argument('--k', type=int, default=20, help='Kmer size')
parser.add_argument('--w', type=int, default=31, help='Window size')
parser.add_argument('--xmin', type=int, default=18, help='Upper interval length')
parser.add_argument('--xmax', type=int, default=80, help='Lower interval length')
parser.add_argument('--T', type=float, default=0.1, help='Minimum fraction keeping substitution')
parser.add_argument('--exact', action="store_true", help='Get exact solution for WIS for every read (recalculating weights for each read (much slower but slightly more accuracy,\
not to be used for clusters with over ~500 reads)')
parser.add_argument('--disable_numpy', action="store_true",
help='Do not require numpy to be installed, but this version is about 1.5x slower than with numpy.')
parser.add_argument('--delta_len', type=int, default=5, help='Maximum length difference between two reads intervals for which they would still be merged')
parser.add_argument('--max_seqs_to_spoa', type=int, default=200, help='Maximum number of seqs to spoa')
parser.add_argument('--max_seqs', type=int, default=1000,
help='Maximum number of seqs to correct at a time (in case of large clusters).')
parser.add_argument('--exact_instance_limit', type=int, default=0,
help='Activates slower exact mode for instance smaller than this limit')
parser.add_argument('--set_w_dynamically', action="store_true",
help='Set w = k + max(2*k, floor(cluster_size/1000)).')
parser.add_argument('--verbose', action="store_true", help='Print various developer stats.')
parser.add_argument('--compression', action="store_true", help='Use homopolymer compressed reads. (Deprecated, because we will have fewer \
minmimizer combinations to span regions in homopolymenr dense regions. Solution \
could be to adjust upper interval length dynamically to guarantee a certain number of spanning intervals.')
parser.add_argument('--outfolder', type=str, default=None,
help='The outfolder of isONform, into which the algorithm will write the results.')
parser.add_argument('--iso_abundance', type=int,default=5, help='Cutoff parameter: abundance of reads that have to support an isoform to show in results')
parser.add_argument('--delta_iso_len_3', type=int, default=30,
help='Cutoff parameter: maximum length difference at 3prime end, for which subisoforms are still merged into longer isoforms')
parser.add_argument('--delta_iso_len_5', type=int, default=50,
help='Cutoff parameter: maximum length difference at 5prime end, for which subisoforms are still merged into longer isoforms')
parser.add_argument('--parallel',type=bool,default=False,help='Indicates whether we run the parallelization wrapper script')
parser.add_argument('--slow',action="store_true", help='EXPERIMENTAL PARAMETER: has high repercussions on run time use the slow mode for the simplification of the graph (bubble popping), slow mode: every bubble gets popped.')
args = parser.parse_args()
if args.xmin < 2 * args.k:
args.xmin = 2 * args.k
eprint("xmin set to {0}".format(args.xmin))
if len(sys.argv) == 1:
parser.print_help()
sys.exit()
os.environ['PYTHONHASHSEED'] = '0'
if args.outfolder and not os.path.exists(args.outfolder):
os.makedirs(args.outfolder)
if 100 < args.w or args.w < args.k:
eprint('Please specify a window of size larger or equal to k, and smaller than 100.')
sys.exit(1)
main(args)