-
Notifications
You must be signed in to change notification settings - Fork 0
/
policy.py
263 lines (222 loc) · 8.72 KB
/
policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import math
import torch
import torch.nn as nn
from typing import Union
'''
Code from Diffusion Policy: https://github.com/real-stanford/diffusion_policy
'''
#@markdown ### **Network**
#@markdown
#@markdown Defines a 1D UNet architecture `ConditionalUnet1D`
#@markdown as the noies prediction network
#@markdown
#@markdown Components
#@markdown - `SinusoidalPosEmb` Positional encoding for the diffusion iteration k
#@markdown - `Downsample1d` Strided convolution to reduce temporal resolution
#@markdown - `Upsample1d` Transposed convolution to increase temporal resolution
#@markdown - `Conv1dBlock` Conv1d --> GroupNorm --> Mish
#@markdown - `ConditionalResidualBlock1D` Takes two inputs `x` and `cond`. \
#@markdown `x` is passed through 2 `Conv1dBlock` stacked together with residual connection.
#@markdown `cond` is applied to `x` with [FiLM](https://arxiv.org/abs/1709.07871) conditioning.
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
emb = x[:, None] * emb[None, :]
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
class Downsample1d(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv = nn.Conv1d(dim, dim, 3, 2, 1)
def forward(self, x):
return self.conv(x)
class Upsample1d(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)
def forward(self, x):
return self.conv(x)
class Conv1dBlock(nn.Module):
'''
Conv1d --> GroupNorm --> Mish
'''
def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
super().__init__()
self.block = nn.Sequential(
nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
nn.GroupNorm(n_groups, out_channels),
nn.Mish(),
)
def forward(self, x):
return self.block(x)
class ConditionalResidualBlock1D(nn.Module):
def __init__(self,
in_channels,
out_channels,
cond_dim,
kernel_size=3,
n_groups=8):
super().__init__()
self.blocks = nn.ModuleList([
Conv1dBlock(in_channels, out_channels, kernel_size, n_groups=n_groups),
Conv1dBlock(out_channels, out_channels, kernel_size, n_groups=n_groups),
])
# FiLM modulation https://arxiv.org/abs/1709.07871
# predicts per-channel scale and bias
cond_channels = out_channels * 2
self.out_channels = out_channels
self.cond_encoder = nn.Sequential(
nn.Mish(),
nn.Linear(cond_dim, cond_channels),
nn.Unflatten(-1, (-1, 1))
)
# make sure dimensions compatible
self.residual_conv = nn.Conv1d(in_channels, out_channels, 1) \
if in_channels != out_channels else nn.Identity()
def forward(self, x, cond):
'''
x : [ batch_size x in_channels x horizon ]
cond : [ batch_size x cond_dim]
returns:
out : [ batch_size x out_channels x horizon ]
'''
out = self.blocks[0](x)
embed = self.cond_encoder(cond)
embed = embed.reshape(
embed.shape[0], 2, self.out_channels, 1)
scale = embed[:,0,...]
bias = embed[:,1,...]
out = scale * out + bias
out = self.blocks[1](out)
out = out + self.residual_conv(x)
return out
class ConditionalUnet1D(nn.Module):
def __init__(self,
input_dim,
global_cond_dim,
diffusion_step_embed_dim=256,
down_dims=[256,512,1024],
kernel_size=5,
n_groups=8
):
"""
input_dim: Dim of actions.
global_cond_dim: Dim of global conditioning applied with FiLM
in addition to diffusion step embedding. This is usually obs_horizon * obs_dim
diffusion_step_embed_dim: Size of positional encoding for diffusion iteration k
down_dims: Channel size for each UNet level.
The length of this array determines numebr of levels.
kernel_size: Conv kernel size
n_groups: Number of groups for GroupNorm
"""
super().__init__()
all_dims = [input_dim] + list(down_dims)
start_dim = down_dims[0]
dsed = diffusion_step_embed_dim
diffusion_step_encoder = nn.Sequential(
SinusoidalPosEmb(dsed),
nn.Linear(dsed, dsed * 4),
nn.Mish(),
nn.Linear(dsed * 4, dsed),
)
cond_dim = dsed + global_cond_dim
in_out = list(zip(all_dims[:-1], all_dims[1:]))
mid_dim = all_dims[-1]
self.mid_modules = nn.ModuleList([
ConditionalResidualBlock1D(
mid_dim, mid_dim, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups
),
ConditionalResidualBlock1D(
mid_dim, mid_dim, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups
),
])
down_modules = nn.ModuleList([])
for ind, (dim_in, dim_out) in enumerate(in_out):
is_last = ind >= (len(in_out) - 1)
down_modules.append(nn.ModuleList([
ConditionalResidualBlock1D(
dim_in, dim_out, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups),
ConditionalResidualBlock1D(
dim_out, dim_out, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups),
Downsample1d(dim_out) if not is_last else nn.Identity()
]))
up_modules = nn.ModuleList([])
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
is_last = ind >= (len(in_out) - 1)
up_modules.append(nn.ModuleList([
ConditionalResidualBlock1D(
dim_out*2, dim_in, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups),
ConditionalResidualBlock1D(
dim_in, dim_in, cond_dim=cond_dim,
kernel_size=kernel_size, n_groups=n_groups),
Upsample1d(dim_in) if not is_last else nn.Identity()
]))
final_conv = nn.Sequential(
Conv1dBlock(start_dim, start_dim, kernel_size=kernel_size),
nn.Conv1d(start_dim, input_dim, 1),
)
self.diffusion_step_encoder = diffusion_step_encoder
self.up_modules = up_modules
self.down_modules = down_modules
self.final_conv = final_conv
print("number of parameters: {:e}".format(
sum(p.numel() for p in self.parameters()))
)
def forward(self,
sample: torch.Tensor,
timestep: Union[torch.Tensor, float, int],
global_cond=None):
"""
x: (B,T,input_dim)
timestep: (B,) or int, diffusion step
global_cond: (B,global_cond_dim)
output: (B,T,input_dim)
"""
# (B,T,C)
sample = sample.moveaxis(-1,-2)
# (B,C,T)
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
global_feature = self.diffusion_step_encoder(timesteps)
if global_cond is not None:
global_feature = torch.cat([
global_feature, global_cond
], axis=-1)
x = sample
h = []
for idx, (resnet, resnet2, downsample) in enumerate(self.down_modules):
x = resnet(x, global_feature)
x = resnet2(x, global_feature)
# print("\nx shape: ", x.shape)
h.append(x)
x = downsample(x)
for mid_module in self.mid_modules:
x = mid_module(x, global_feature)
for idx, (resnet, resnet2, upsample) in enumerate(self.up_modules):
x = torch.cat((x, h.pop()), dim=1)
x = resnet(x, global_feature)
x = resnet2(x, global_feature)
x = upsample(x)
x = self.final_conv(x)
# (B,C,T)
x = x.moveaxis(-1,-2)
# (B,T,C)
return x