We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
2.8.1
2.9.2
Processor SoC QCM2290.
Version tags:
cmake \ -DCMAKE_INSTALL_PREFIX=${SCRIPTPATH}/.install_android/ \ -DCMAKE_TOOLCHAIN_FILE=~/Android/Sdk/ndk/25.2.9519653/build/cmake/android.toolchain.cmake \ -DCMAKE_BUILD_TYPE=Release \ -DANDROID_ABI="arm64-v8a" \ -DANDROID_STL=c++_shared \ -DMNN_USE_LOGCAT=ON \ -DMNN_ARM82=ON \ -DMNN_SUPPORT_BF16=ON \ -DMNN_OPENCL=ON \ -DMNN_VULKAN=ON \ -DMNN_BUILD_OPENCV=ON \ -DMNN_IMGCODECS=ON \ -DMNN_JNI=ON \ -DANDROID_NATIVE_API_LEVEL=android-21 \ -DMNN_BUILD_FOR_ANDROID_COMMAND=true \ -DNATIVE_LIBRARY_OUTPUT=. -DNATIVE_INCLUDE_OUTPUT=. \ -DMNN_BUILD_TEST=ON \ -DMNN_BUILD_CONVERTER=ON \ -DMNN_BUILD_BENCHMARK=ON \ ../
The performance of version 2.9.2 is worse than the 2.8.1, using the benchmark tool:
bengal_2w:/data/local/tmp/mnn-2.9.2-lib-arm64 # LD_LIBRARY_PATH=./:../cpp_shared/arm64-v8a/ ./benchmark.out ../ai-models/ 10 3 3 MNN benchmark Forward type: OpenCL thread=4 precision=2 sparsity=0 sparseBlockOC=1 testQuantizedModel=0 --------> Benchmarking... loop = 10, warmup = 3 [ - ] yolov8n_160.mnn max = 87.178 ms min = 84.706 ms avg = 85.698 ms
bengal_2w:/data/local/tmp/MNN # LD_LIBRARY_PATH=./lib/ bin/benchmark.out models/ 10 3 3 MNN benchmark Forward type: OpenCL thread=4 precision=2 sparsity=0 sparseBlockOC=1 testQuantizedModel=0 --------> Benchmarking... loop = 10, warmup = 3 [ - ] yolov8n_160.mnn max = 65.977 ms min = 62.635 ms avg = 63.617 ms
The model used for this test is the YoloV8 Nano from Ultralytics, using an image input size of 160x160.
The text was updated successfully, but these errors were encountered:
收到,我们排查一下
Sorry, something went wrong.
内部代码修正,近期同步
2.9.5 已经修正,可以更新并测试下,内部验证结果是快于 2.8.1 版本
@jxt1234,
I tested again the same model in the board QCM2290, but I'm still getting worse numbers than the version 2.8.1:
bengal_2w:/data/local/tmp/mnn-2.9.5 # LD_LIBRARY_PATH=./lib/ ./bin/benchmark.out ../mnn-models/ 10 3 3 MNN benchmark Forward type: OpenCL thread=4 precision=2 sparsity=0 sparseBlockOC=1 testQuantizedModel=0 --------> Benchmarking... loop = 10, warmup = 3 [ - ] yolov8n_160.mnn max = 83.413 ms min = 81.695 ms avg = 82.418 ms
However, the performance is indeed better than the 2.9.2.
Using our internal applications I see around the same performance numbers as your benchmark binary.
No branches or pull requests
平台(如果交叉编译请再附上交叉编译目标平台):
Platform(Include target platform as well if cross-compiling):
Processor SoC QCM2290.
Github版本:
Github Version:
Version tags:
2.8.1
: https://github.com/alibaba/MNN/tree/d284430f92557aa8b4cc435752b1dff3309f2e382.9.2
: https://github.com/alibaba/MNN/tree/e1011161ed0382e1a33a65bfdde8bee931dbcfaf编译方式:
Compiling Method
The performance of version
2.9.2
is worse than the2.8.1
, using the benchmark tool:2.9.2
2.8.1
:The model used for this test is the YoloV8 Nano from Ultralytics, using an image input size of 160x160.
The text was updated successfully, but these errors were encountered: