forked from tpruvot/ccminer
-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathcuda_myriadgroestl.cu
438 lines (368 loc) · 16.2 KB
/
cuda_myriadgroestl.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
// Auf Myriadcoin spezialisierte Version von Groestl inkl. Bitslice
// Based on Tanguy Pruvot's repo
// Provos Alexis - 2016
#include "cuda_helper.h"
#include "miner.h"
#ifdef __INTELLISENSE__
#define __CUDA_ARCH__ 500
#define __funnelshift_r(x,y,n) (x >> n)
#define atomicExch(p,x) x
#endif
// 64 Registers Variant for Compute 3.0
#include "quark/groestl_functions_quad.h"
#include "quark/groestl_transf_quad.h"
// globaler Speicher für alle HeftyHashes aller Threads
static uint32_t *d_outputHashes[MAX_GPUS];
__constant__ uint32_t _ALIGN(8) c_input[32];
// muss expandiert werden
__constant__ const uint32_t sha256_constantTable[64] = {
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2
};
__constant__ const uint32_t sha256_constantTable2[64] = {
0xC28A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF374,
0x649B69C1, 0xF0FE4786, 0x0FE1EDC6, 0x240CF254, 0x4FE9346F, 0x6CC984BE, 0x61B9411E, 0x16F988FA, 0xF2C65152, 0xA88E5A6D, 0xB019FC65, 0xB9D99EC7, 0x9A1231C3, 0xE70EEAA0, 0xFDB1232B, 0xC7353EB0,
0x3069BAD5, 0xCB976D5F, 0x5A0F118F, 0xDC1EEEFD, 0x0A35B689, 0xDE0B7A04, 0x58F4CA9D, 0xE15D5B16, 0x007F3E86, 0x37088980, 0xA507EA32, 0x6FAB9537, 0x17406110, 0x0D8CD6F1, 0xCDAA3B6D, 0xC0BBBE37,
0x83613BDA, 0xDB48A363, 0x0B02E931, 0x6FD15CA7, 0x521AFACA, 0x31338431, 0x6ED41A95, 0x6D437890, 0xC39C91F2, 0x9ECCABBD, 0xB5C9A0E6, 0x532FB63C, 0xD2C741C6, 0x07237EA3, 0xA4954B68, 0x4C191D76
};
#define Ch(a, b, c) (((b^c) & a) ^ c)
#define Maj(x, y, z) ((x & (y | z)) | (y & z)) //((b) & (c)) | (((b) | (c)) & (a)); //andor32(a,b,c);
#define xor3b(a,b,c) ((a ^ b) ^ c)
__device__ __forceinline__ uint32_t bsg2_0(const uint32_t x)
{
return xor3b(ROTR32(x,2),ROTR32(x,13),ROTR32(x,22));
}
__device__ __forceinline__ uint32_t bsg2_1(const uint32_t x)
{
return xor3b(ROTR32(x,6),ROTR32(x,11),ROTR32(x,25));
}
__device__ __forceinline__ uint32_t ssg2_0(const uint32_t x)
{
return xor3b(ROTR32(x,7),ROTR32(x,18),(x>>3));
}
__device__ __forceinline__ uint32_t ssg2_1(const uint32_t x)
{
return xor3b(ROTR32(x,17),ROTR32(x,19),(x>>10));
}
__device__ __forceinline__
static void sha2_step1(const uint32_t a,const uint32_t b,const uint32_t c, uint32_t &d,const uint32_t e,const uint32_t f,const uint32_t g, uint32_t &h,const uint32_t in, const uint32_t Kshared)
{
const uint32_t t1 = h + bsg2_1(e) + Ch(e, f, g) + Kshared + in;
h = t1 + bsg2_0(a) + Maj(a, b, c);
d+= t1;
}
__device__ __forceinline__
static void sha2_step2(const uint32_t a,const uint32_t b,const uint32_t c, uint32_t &d,const uint32_t e,const uint32_t f,const uint32_t g, uint32_t &h, const uint32_t Kshared)
{
const uint32_t t1 = h + bsg2_1(e) + Ch(e, f, g) + Kshared;
h = t1 + bsg2_0(a) + Maj(a, b, c);
d+= t1;
}
__device__ __forceinline__
static void sha256_round_body(uint32_t* in, uint32_t* state,const uint32_t* __restrict__ Kshared)
{
uint32_t a = state[0];
uint32_t b = state[1];
uint32_t c = state[2];
uint32_t d = state[3];
uint32_t e = state[4];
uint32_t f = state[5];
uint32_t g = state[6];
uint32_t h = state[7];
sha2_step1(a,b,c,d,e,f,g,h,in[0], Kshared[0]);
sha2_step1(h,a,b,c,d,e,f,g,in[1], Kshared[1]);
sha2_step1(g,h,a,b,c,d,e,f,in[2], Kshared[2]);
sha2_step1(f,g,h,a,b,c,d,e,in[3], Kshared[3]);
sha2_step1(e,f,g,h,a,b,c,d,in[4], Kshared[4]);
sha2_step1(d,e,f,g,h,a,b,c,in[5], Kshared[5]);
sha2_step1(c,d,e,f,g,h,a,b,in[6], Kshared[6]);
sha2_step1(b,c,d,e,f,g,h,a,in[7], Kshared[7]);
sha2_step1(a,b,c,d,e,f,g,h,in[8], Kshared[8]);
sha2_step1(h,a,b,c,d,e,f,g,in[9], Kshared[9]);
sha2_step1(g,h,a,b,c,d,e,f,in[10],Kshared[10]);
sha2_step1(f,g,h,a,b,c,d,e,in[11],Kshared[11]);
sha2_step1(e,f,g,h,a,b,c,d,in[12],Kshared[12]);
sha2_step1(d,e,f,g,h,a,b,c,in[13],Kshared[13]);
sha2_step1(c,d,e,f,g,h,a,b,in[14],Kshared[14]);
sha2_step1(b,c,d,e,f,g,h,a,in[15],Kshared[15]);
#pragma unroll 3
for (int i=0; i<3; i++)
{
#pragma unroll 16
for (int j = 0; j < 16; j++){
in[j] = in[j] + in[(j + 9) & 15] + ssg2_0(in[(j + 1) & 15]) + ssg2_1(in[(j + 14) & 15]);
}
sha2_step1(a, b, c, d, e, f, g, h, in[0], Kshared[16 + 16 * i]);
sha2_step1(h, a, b, c, d, e, f, g, in[1], Kshared[17 + 16 * i]);
sha2_step1(g, h, a, b, c, d, e, f, in[2], Kshared[18 + 16 * i]);
sha2_step1(f, g, h, a, b, c, d, e, in[3], Kshared[19 + 16 * i]);
sha2_step1(e, f, g, h, a, b, c, d, in[4], Kshared[20 + 16 * i]);
sha2_step1(d, e, f, g, h, a, b, c, in[5], Kshared[21 + 16 * i]);
sha2_step1(c, d, e, f, g, h, a, b, in[6], Kshared[22 + 16 * i]);
sha2_step1(b, c, d, e, f, g, h, a, in[7], Kshared[23 + 16 * i]);
sha2_step1(a, b, c, d, e, f, g, h, in[8], Kshared[24 + 16 * i]);
sha2_step1(h, a, b, c, d, e, f, g, in[9], Kshared[25 + 16 * i]);
sha2_step1(g, h, a, b, c, d, e, f, in[10], Kshared[26 + 16 * i]);
sha2_step1(f, g, h, a, b, c, d, e, in[11], Kshared[27 + 16 * i]);
sha2_step1(e, f, g, h, a, b, c, d, in[12], Kshared[28 + 16 * i]);
sha2_step1(d, e, f, g, h, a, b, c, in[13], Kshared[29 + 16 * i]);
sha2_step1(c, d, e, f, g, h, a, b, in[14], Kshared[30 + 16 * i]);
sha2_step1(b, c, d, e, f, g, h, a, in[15], Kshared[31 + 16 * i]);
}
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
}
__device__ __forceinline__
static void sha256_round_body_final(uint32_t* state,const uint32_t* Kshared)
{
uint32_t a = state[0];
uint32_t b = state[1];
uint32_t c = state[2];
uint32_t d = state[3];
uint32_t e = state[4];
uint32_t f = state[5];
uint32_t g = state[6];
uint32_t h = state[7];
sha2_step2(a,b,c,d,e,f,g,h, Kshared[0]);
sha2_step2(h,a,b,c,d,e,f,g, Kshared[1]);
sha2_step2(g,h,a,b,c,d,e,f, Kshared[2]);
sha2_step2(f,g,h,a,b,c,d,e, Kshared[3]);
sha2_step2(e,f,g,h,a,b,c,d, Kshared[4]);
sha2_step2(d,e,f,g,h,a,b,c, Kshared[5]);
sha2_step2(c,d,e,f,g,h,a,b, Kshared[6]);
sha2_step2(b,c,d,e,f,g,h,a, Kshared[7]);
sha2_step2(a,b,c,d,e,f,g,h, Kshared[8]);
sha2_step2(h,a,b,c,d,e,f,g, Kshared[9]);
sha2_step2(g,h,a,b,c,d,e,f, Kshared[10]);
sha2_step2(f,g,h,a,b,c,d,e, Kshared[11]);
sha2_step2(e,f,g,h,a,b,c,d, Kshared[12]);
sha2_step2(d,e,f,g,h,a,b,c, Kshared[13]);
sha2_step2(c,d,e,f,g,h,a,b, Kshared[14]);
sha2_step2(b,c,d,e,f,g,h,a, Kshared[15]);
#pragma unroll
for (int i=0; i<2; i++){
sha2_step2(a, b, c, d, e, f, g, h, Kshared[16 + 16 * i]);
sha2_step2(h, a, b, c, d, e, f, g, Kshared[17 + 16 * i]);
sha2_step2(g, h, a, b, c, d, e, f, Kshared[18 + 16 * i]);
sha2_step2(f, g, h, a, b, c, d, e, Kshared[19 + 16 * i]);
sha2_step2(e, f, g, h, a, b, c, d, Kshared[20 + 16 * i]);
sha2_step2(d, e, f, g, h, a, b, c, Kshared[21 + 16 * i]);
sha2_step2(c, d, e, f, g, h, a, b, Kshared[22 + 16 * i]);
sha2_step2(b, c, d, e, f, g, h, a, Kshared[23 + 16 * i]);
sha2_step2(a, b, c, d, e, f, g, h, Kshared[24 + 16 * i]);
sha2_step2(h, a, b, c, d, e, f, g, Kshared[25 + 16 * i]);
sha2_step2(g, h, a, b, c, d, e, f, Kshared[26 + 16 * i]);
sha2_step2(f, g, h, a, b, c, d, e, Kshared[27 + 16 * i]);
sha2_step2(e, f, g, h, a, b, c, d, Kshared[28 + 16 * i]);
sha2_step2(d, e, f, g, h, a, b, c, Kshared[29 + 16 * i]);
sha2_step2(c, d, e, f, g, h, a, b, Kshared[30 + 16 * i]);
sha2_step2(b, c, d, e, f, g, h, a, Kshared[31 + 16 * i]);
}
sha2_step2(a, b, c, d, e, f, g, h, Kshared[16 + 16 * 2]);
sha2_step2(h, a, b, c, d, e, f, g, Kshared[17 + 16 * 2]);
sha2_step2(g, h, a, b, c, d, e, f, Kshared[18 + 16 * 2]);
sha2_step2(f, g, h, a, b, c, d, e, Kshared[19 + 16 * 2]);
sha2_step2(e, f, g, h, a, b, c, d, Kshared[20 + 16 * 2]);
sha2_step2(d, e, f, g, h, a, b, c, Kshared[21 + 16 * 2]);
sha2_step2(c, d, e, f, g, h, a, b, Kshared[22 + 16 * 2]);
sha2_step2(b, c, d, e, f, g, h, a, Kshared[23 + 16 * 2]);
sha2_step2(a, b, c, d, e, f, g, h, Kshared[24 + 16 * 2]);
sha2_step2(h, a, b, c, d, e, f, g, Kshared[25 + 16 * 2]);
sha2_step2(g, h, a, b, c, d, e, f, Kshared[26 + 16 * 2]);
sha2_step2(f, g, h, a, b, c, d, e, Kshared[27 + 16 * 2]);
sha2_step2(e, f, g, h, a, b, c, d, Kshared[28 + 16 * 2]);
sha2_step2(d, e, f, g, h, a, b, c, Kshared[29 + 16 * 2]);
state[6]+= g;
state[7]+= h;
}
__global__
#if __CUDA_ARCH__ > 500
__launch_bounds__(1024,2) /* to force 32 regs */
#else
__launch_bounds__(768,2) /* to force 32 regs */
#endif
void myriadgroestl_gpu_hash_sha(uint32_t threads, uint32_t startNounce, uint32_t* hashBuffer, uint32_t *resNonces,const uint64_t target64){
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t W[16];
uint32_t *inpHash = &hashBuffer[thread<<4];
*(uint2x4*)&W[ 0] = __ldg4((uint2x4*)&inpHash[ 0]);
*(uint2x4*)&W[ 8] = __ldg4((uint2x4*)&inpHash[ 8]);
uint32_t buf[ 8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
sha256_round_body(W,buf,sha256_constantTable);
sha256_round_body_final(buf,sha256_constantTable2);
#if 0
// Full sha hash
#pragma unroll
for(int k=0; k<8; k++)
W[k] = cuda_swab32(buf[k]);
#else
W[6] = cuda_swab32(buf[6]);
W[7] = cuda_swab32(buf[7]);
#endif
if (*(uint64_t*)&W[6] <= target64){
uint32_t tmp = atomicExch(&resNonces[0], startNounce + thread);
if (tmp != UINT32_MAX)
resNonces[1] = tmp;
}
}
}
#define TPB52 512
#define TPB50 512
#define THF 4
__global__
#if __CUDA_ARCH__ > 500
__launch_bounds__(TPB52, 2)
#else
__launch_bounds__(TPB50, 2)
#endif
void myriadgroestl_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_t *d_hash){
// durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x)>>2;
if (thread < threads)
{
const uint32_t thr = threadIdx.x & 3;
// GROESTL
uint32_t input[8];
uint32_t other[8];
uint32_t msgBitsliced[8];
uint32_t state[8];
uint32_t output[16];
*(uint2x4*)input = *(uint2x4*)&c_input[((threadIdx.x & 2)<<3)];
*(uint2x4*)other = *(uint2x4*)&c_input[(((threadIdx.x+1)&3)<<3)];
#pragma unroll 8
for(int k=0; k<8; k++){
// input[k] = c_input[k+((threadIdx.x & 2)<<3)];
// other[k] = c_input[k+(((threadIdx.x+1)&3)<<3)];
other[k] = __shfl(other[k], threadIdx.x & 2, 4);
}
if ((thr == 2) || (thr == 3))
other[4] = cuda_swab32(startNounce + thread);
uint32_t t;
const uint32_t perm = (threadIdx.x & 1) ? 0x7362 : 0x5140;
merge8(msgBitsliced[0], input[0], input[4], perm);
merge8(msgBitsliced[1], other[0], other[4], perm);
merge8(msgBitsliced[2], input[1], input[5], perm);
merge8(msgBitsliced[3], other[1], other[5], perm);
merge8(msgBitsliced[4], input[2], input[6], perm);
merge8(msgBitsliced[5], other[2], other[6], perm);
merge8(msgBitsliced[6], input[3], input[7], perm);
merge8(msgBitsliced[7], other[3], other[7], perm);
SWAP1(msgBitsliced[0], msgBitsliced[1]);
SWAP1(msgBitsliced[2], msgBitsliced[3]);
SWAP1(msgBitsliced[4], msgBitsliced[5]);
SWAP1(msgBitsliced[6], msgBitsliced[7]);
SWAP2(msgBitsliced[0], msgBitsliced[2]);
SWAP2(msgBitsliced[1], msgBitsliced[3]);
SWAP2(msgBitsliced[4], msgBitsliced[6]);
SWAP2(msgBitsliced[5], msgBitsliced[7]);
SWAP4(msgBitsliced[0], msgBitsliced[4]);
SWAP4(msgBitsliced[1], msgBitsliced[5]);
SWAP4(msgBitsliced[2], msgBitsliced[6]);
SWAP4(msgBitsliced[3], msgBitsliced[7]);
groestl512_progressMessage_quad(state, msgBitsliced,thr);
from_bitslice_quad52(state, output);
uint2x4* outHash = (uint2x4*)&d_hash[thread<<4];
#if __CUDA_ARCH__ <= 500
output[0] = __byte_perm(output[0], __shfl(output[0], (threadIdx.x + 1) & 3, 4), 0x0167);
output[2] = __byte_perm(output[2], __shfl(output[2], (threadIdx.x + 1) & 3, 4), 0x0167);
output[4] = __byte_perm(output[4], __shfl(output[4], (threadIdx.x + 1) & 3, 4), 0x2367);
output[6] = __byte_perm(output[6], __shfl(output[6], (threadIdx.x + 1) & 3, 4), 0x2367);
output[8] = __byte_perm(output[8], __shfl(output[8], (threadIdx.x + 1) & 3, 4), 0x0167);
output[10] = __byte_perm(output[10], __shfl(output[10], (threadIdx.x + 1) & 3, 4), 0x0167);
output[12] = __byte_perm(output[12], __shfl(output[12], (threadIdx.x + 1) & 3, 4), 0x2367);
output[14] = __byte_perm(output[14], __shfl(output[14], (threadIdx.x + 1) & 3, 4), 0x2367);
if (thr == 0 || thr == 2){
output[0 + 1] = __shfl(output[0], (threadIdx.x + 2) & 3, 4);
output[2 + 1] = __shfl(output[2], (threadIdx.x + 2) & 3, 4);
output[4 + 1] = __shfl(output[4], (threadIdx.x + 2) & 3, 4);
output[6 + 1] = __shfl(output[6], (threadIdx.x + 2) & 3, 4);
output[8 + 1] = __shfl(output[8], (threadIdx.x + 2) & 3, 4);
output[10 + 1] = __shfl(output[10], (threadIdx.x + 2) & 3, 4);
output[12 + 1] = __shfl(output[12], (threadIdx.x + 2) & 3, 4);
output[14 + 1] = __shfl(output[14], (threadIdx.x + 2) & 3, 4);
if(thr==0){
outHash[0] = *(uint2x4*)&output[0];
outHash[1] = *(uint2x4*)&output[8];
}
}
#else
output[ 0] = __byte_perm(output[0], __shfl(output[0], (threadIdx.x + 1) & 3, 4), 0x0167);
output[ 1] = __shfl(output[0], (threadIdx.x + 2) & 3, 4);
output[ 2] = __byte_perm(output[2], __shfl(output[2], (threadIdx.x + 1) & 3, 4), 0x0167);
output[ 3] = __shfl(output[2], (threadIdx.x + 2) & 3, 4);
output[ 4] = __byte_perm(output[4], __shfl(output[4], (threadIdx.x + 1) & 3, 4), 0x2367);
output[ 5] = __shfl(output[4], (threadIdx.x + 2) & 3, 4);
output[ 6] = __byte_perm(output[6], __shfl(output[6], (threadIdx.x + 1) & 3, 4), 0x2367);
output[ 7] = __shfl(output[6], (threadIdx.x + 2) & 3, 4);
output[ 8] = __byte_perm(output[8], __shfl(output[8], (threadIdx.x + 1) & 3, 4), 0x0167);
output[ 9] = __shfl(output[8], (threadIdx.x + 2) & 3, 4);
output[10] = __byte_perm(output[10], __shfl(output[10], (threadIdx.x + 1) & 3, 4), 0x0167);
output[11] = __shfl(output[10], (threadIdx.x + 2) & 3, 4);
output[12] = __byte_perm(output[12], __shfl(output[12], (threadIdx.x + 1) & 3, 4), 0x2367);
output[13] = __shfl(output[12], (threadIdx.x + 2) & 3, 4);
output[14] = __byte_perm(output[14], __shfl(output[14], (threadIdx.x + 1) & 3, 4), 0x2367);
output[15] = __shfl(output[14], (threadIdx.x + 2) & 3, 4);
if(thr==0){
outHash[0] = *(uint2x4*)&output[0];
outHash[1] = *(uint2x4*)&output[8];
}
#endif
}
}
// Setup Function
__host__
void myriadgroestl_cpu_init(int thr_id, uint32_t threads)
{
CUDA_SAFE_CALL(cudaMalloc(&d_outputHashes[thr_id], (size_t) 64 * threads));
}
__host__
void myriadgroestl_cpu_free(int thr_id)
{
cudaFree(d_outputHashes[thr_id]);
}
__host__
void myriadgroestl_cpu_setBlock(int thr_id, void *data){
uint32_t msgBlock[32] = { 0 };
uint32_t paddedInput[32];
memcpy(&msgBlock[0], data, 80);
msgBlock[20] = 0x80;
msgBlock[31] = 0x01000000;
for(int thr=0;thr<4;thr++)
for(int k=0; k<8; k++)
paddedInput[k+(thr<<3)] = msgBlock[4*k+thr];
for(int k=0;k<8;k++){
uint32_t temp = paddedInput[k+(1<<3)];
paddedInput[k+(1<<3)] = paddedInput[k+(2<<3)];
paddedInput[k+(2<<3)] = temp;
}
cudaMemcpyToSymbol(c_input, paddedInput, 128);
}
__host__
void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_resNounce, const uint64_t target)
{
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
uint32_t tpb = TPB52;
int dev_id = device_map[thr_id];
if (device_sm[dev_id] <= 500) tpb = TPB50;
const dim3 grid((THF*threads + tpb-1)/tpb);
const dim3 block(tpb);
myriadgroestl_gpu_hash_quad <<< grid, block >>> (threads, startNounce, d_outputHashes[thr_id]);
tpb = (device_sm[dev_id] <= 500) ? 768 : 1024;
dim3 grid2((threads + tpb - 1) / tpb);
dim3 block2(tpb);
myriadgroestl_gpu_hash_sha <<< grid2, block2 >>> (threads, startNounce, d_outputHashes[thr_id], d_resNounce, target);
}