diff --git a/.drone.yml b/.drone.yml index 4235983f01d34..d1dbc4c191338 100644 --- a/.drone.yml +++ b/.drone.yml @@ -22,7 +22,7 @@ steps: - pip install -r ./tests/requirements.txt --user - pip list - python -c "import torch ; print(' & '.join([torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())]) if torch.cuda.is_available() else 'only CPU')" - - coverage run --source pytorch_lightning -m py.test pytorch_lightning tests -v --doctest-modules # --flake8 + - coverage run --source pytorch_lightning -m py.test pytorch_lightning tests benchmarks -v --doctest-modules # --flake8 - coverage report - codecov --token $CODECOV_TOKEN # --pr $DRONE_PULL_REQUEST --build $DRONE_BUILD_NUMBER --branch $DRONE_BRANCH --commit $DRONE_COMMIT --tag $DRONE_TAG - python tests/collect_env_details.py diff --git a/CHANGELOG.md b/CHANGELOG.md index 16cdea2cb92af..76405ffc014b7 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -8,6 +8,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/). ### Added +- Added parity test between a vanilla MNIST model and lightning model ([#1284](https://github.com/PyTorchLightning/pytorch-lightning/pull/1284)) - Added same step loggers' metrics aggregation ([#1278](https://github.com/PyTorchLightning/pytorch-lightning/pull/1278)) - Added Reinforcement Learning - Deep Q-network (DQN) lightning example ([#1232](https://github.com/PyTorchLightning/pytorch-lightning/pull/1232)) - Added support for hierarchical `dict` ([#1152](https://github.com/PyTorchLightning/pytorch-lightning/pull/1152)) diff --git a/benchmarks/__init__.py b/benchmarks/__init__.py new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/benchmarks/test_trainer_parity.py b/benchmarks/test_trainer_parity.py new file mode 100644 index 0000000000000..37edf8f121a55 --- /dev/null +++ b/benchmarks/test_trainer_parity.py @@ -0,0 +1,151 @@ +import os +import time + +import numpy as np +import pytest +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.data import DataLoader +from torchvision import transforms +from torchvision.datasets import MNIST + +from pytorch_lightning import Trainer, LightningModule + + +class ParityMNIST(LightningModule): + + def __init__(self): + super(ParityMNIST, self).__init__() + self.c_d1 = nn.Linear(in_features=28 * 28, out_features=128) + self.c_d1_bn = nn.BatchNorm1d(128) + self.c_d1_drop = nn.Dropout(0.3) + self.c_d2 = nn.Linear(in_features=128, out_features=10) + + def forward(self, x): + x = x.view(x.size(0), -1) + x = self.c_d1(x) + x = torch.tanh(x) + x = self.c_d1_bn(x) + x = self.c_d1_drop(x) + x = self.c_d2(x) + return x + + def training_step(self, batch, batch_nb): + x, y = batch + y_hat = self(x) + loss = F.cross_entropy(y_hat, y) + return {'loss': loss} + + def configure_optimizers(self): + return torch.optim.Adam(self.parameters(), lr=0.02) + + def train_dataloader(self): + return DataLoader(MNIST(os.getcwd(), train=True, download=True, + transform=transforms.ToTensor()), batch_size=32) + + +@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") +def test_pytorch_parity(tmpdir): + """ + Verify that the same pytorch and lightning models achieve the same results + :param tmpdir: + :return: + """ + num_epochs = 2 + num_rums = 3 + lightning_outs, pl_times = lightning_loop(ParityMNIST, num_rums, num_epochs) + manual_outs, pt_times = vanilla_loop(ParityMNIST, num_rums, num_epochs) + + # make sure the losses match exactly to 5 decimal places + for pl_out, pt_out in zip(lightning_outs, manual_outs): + np.testing.assert_almost_equal(pl_out, pt_out, 5) + + +def set_seed(seed): + np.random.seed(seed) + torch.manual_seed(seed) + if torch.cuda.is_available(): + torch.cuda.manual_seed(seed) + + +def vanilla_loop(MODEL, num_runs=10, num_epochs=10): + """ + Returns an array with the last loss from each epoch for each run + """ + device = torch.device('cuda' if torch.cuda.is_available() else "cpu") + errors = [] + times = [] + + for i in range(num_runs): + time_start = time.perf_counter() + + # set seed + seed = i + set_seed(seed) + + # init model parts + model = MODEL() + dl = model.train_dataloader() + optimizer = model.configure_optimizers() + + # model to GPU + model = model.to(device) + + epoch_losses = [] + for epoch in range(num_epochs): + + # run through full training set + for j, batch in enumerate(dl): + x, y = batch + x = x.cuda(0) + y = y.cuda(0) + batch = (x, y) + + loss_dict = model.training_step(batch, j) + loss = loss_dict['loss'] + loss.backward() + optimizer.step() + optimizer.zero_grad() + + # track last epoch loss + epoch_losses.append(loss.item()) + + time_end = time.perf_counter() + times.append(time_end - time_start) + + errors.append(epoch_losses[-1]) + + return errors, times + + +def lightning_loop(MODEL, num_runs=10, num_epochs=10): + errors = [] + times = [] + + for i in range(num_runs): + time_start = time.perf_counter() + + # set seed + seed = i + set_seed(seed) + + # init model parts + model = MODEL() + trainer = Trainer( + max_epochs=num_epochs, + show_progress_bar=False, + weights_summary=None, + gpus=1, + early_stop_callback=False, + checkpoint_callback=False + ) + trainer.fit(model) + + final_loss = trainer.running_loss.last().item() + errors.append(final_loss) + + time_end = time.perf_counter() + times.append(time_end - time_start) + + return errors, times