Skip to content

Commit b6ee545

Browse files
authored
Merge pull request #7 from llewelld/rules-1b
Add Chapter 1.B rules to "all the rules we know"
2 parents 5560c16 + 0874869 commit b6ee545

File tree

1 file changed

+114
-0
lines changed

1 file changed

+114
-0
lines changed

reference/all-the-rules-we-know.tex

+114
Original file line numberDiff line numberDiff line change
@@ -36,6 +36,9 @@
3636
\theoremstyle{break}
3737
\newtheorem{innernotation}{Notation}
3838

39+
\theoremstyle{break}
40+
\newtheorem{innerresult}{Result}
41+
3942
\newenvironment{definition}[1]
4043
{\renewcommand\theinnerdefinition{#1}\innerdefinition}
4144
{\endinnerdefinition}
@@ -48,6 +51,10 @@
4851
{\renewcommand\theinnernotation{#1}\innernotation}
4952
{\endinnernotation}
5053

54+
\newenvironment{result}[1]
55+
{\renewcommand\theinnerresult{#1}\innerresult}
56+
{\endinnerresult}
57+
5158
\title{All the rules we know}
5259
\date{13 October 2023}
5360
\author{}
@@ -192,4 +199,111 @@ \section*{Chapter 1.A}
192199
Here $\lambda \in \F$ and $(x_1, \ldots, x_n) \in \F^n$.
193200
\end{definition}
194201

202+
\newpage
203+
204+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
205+
\section*{Chapter 1.B}
206+
207+
\begin{definition}{1.18}[addition, scalar multiplication]
208+
An \defn{addition} on a set $V$ is a function that assigns an element $u + v \in V$ to each pair of elements $u, v \in V$.
209+
210+
A \defn{scalar multiplication} on a set $V$ is a function that assigns an element $\lambda v \in V$ to each $\lambda \in \F$ and each $v \in V$.
211+
\end{definition}
212+
213+
\begin{definition}{1.19}[vector space]
214+
A \defn{vector space over $\F$} is a set $V$ along with an addition on $V$ and a scalar multiplication on $V$ such that the following properties hold:
215+
216+
\defn{commutativity}
217+
\begin{forceindent}
218+
$u + v = v + u$ for all $u, v \in V$;
219+
\end{forceindent}
220+
221+
\defn{associativity}
222+
\begin{forceindent}
223+
$(u + v) + w = u + (v + w)$ and $(ab)v = a(bv)$ for all $u, v, w \in V$ and all $a, b \in \F$;
224+
\end{forceindent}
225+
226+
\defn{additive identity}
227+
\begin{forceindent}
228+
there exists an element $0 \in V$ such that $v + 0 = v$ for all $v \in V$;
229+
\end{forceindent}
230+
231+
\defn{additive inverse}
232+
\begin{forceindent}
233+
for every $v \in V$, there exists $w \in V$ such that $v + w = 0$;
234+
\end{forceindent}
235+
236+
\defn{multiplicative identity}
237+
\begin{forceindent}
238+
$1v = v$ for all $v \in V$;
239+
\end{forceindent}
240+
241+
\defn{distributive property}
242+
\begin{forceindent}
243+
$a (u + v) = au + av$ and $(a + b)v = av + bv$ for all $a, b \in \F$ and all $u, v \in V$.
244+
\end{forceindent}
245+
\end{definition}
246+
247+
\begin{definition}{1.20}[vector, point]
248+
Elements of a vector space are called \defn{vectors} or \defn{points}.
249+
\end{definition}
250+
251+
\begin{definition}{1.21}[real vector space, complex vector space]
252+
A vector space over $\R$ is called a \defn{real vector space}.
253+
254+
A vector space over $\C$ is called a \defn{complex vector space}.
255+
\end{definition}
256+
257+
\begin{notation}{1.23}[$\F^S$]
258+
If $S$ is a set, $\F^S$ denotes the set of functions from $S$ to $\F$.
259+
260+
For $f, g \in \F^S$ the \defn{sum} $f + g \in \F^S$ is the function defined by
261+
$$
262+
(f + g)(x) = f(x) + g(x)
263+
$$
264+
for all $x \in S$.
265+
266+
For $\lambda \in \F$ and $f \in \F^S$, the \defn{product} $\lambda f \in \F^S$ is the function defined by
267+
$$
268+
(\lambda f)(x) = \lambda f(x)
269+
$$
270+
for all $x \in S$.
271+
\end{notation}
272+
273+
\begin{notation}{1.27}[$-v, w - v$]
274+
Let $v, w \in V$. Then
275+
\begin{enumerate}
276+
\item $-v$ denotes the additive inverse of $v$;
277+
\item $w - v$ is defined to be $w + (-v)$.
278+
\end{enumerate}
279+
\end{notation}
280+
281+
\begin{notation}{1.28}[$V$]
282+
$V$ denotes a vector space over $\F$.
283+
\end{notation}
284+
285+
The following rules can all derived from the definition of a vector space.
286+
287+
\begin{result}{1.25}[Unique additive identity]
288+
A vector space has a unique additive identity.
289+
\end{result}
290+
291+
\begin{result}{1.26}[Unique additive inverse]
292+
Every element in a vector space has a unique additive inverse.
293+
\end{result}
294+
295+
\begin{result}{1.29}[The number $0$ times a vector]
296+
$0v = 0$ for every $v \in V$.
297+
\end{result}
298+
299+
\begin{result}{1.30}[A number times the vector $0$]
300+
$a0 = 0$ for every $a \in \F$.
301+
\end{result}
302+
303+
\begin{result}{1.31}[The number $-1$ times a vector]
304+
$(-1)v = -v$ for every $v \in V$.
305+
\end{result}
306+
307+
\newpage
308+
195309
\end{document}

0 commit comments

Comments
 (0)