|
36 | 36 | \theoremstyle{break}
|
37 | 37 | \newtheorem{innernotation}{Notation}
|
38 | 38 |
|
| 39 | +\theoremstyle{break} |
| 40 | +\newtheorem{innerresult}{Result} |
| 41 | + |
39 | 42 | \newenvironment{definition}[1]
|
40 | 43 | {\renewcommand\theinnerdefinition{#1}\innerdefinition}
|
41 | 44 | {\endinnerdefinition}
|
|
48 | 51 | {\renewcommand\theinnernotation{#1}\innernotation}
|
49 | 52 | {\endinnernotation}
|
50 | 53 |
|
| 54 | +\newenvironment{result}[1] |
| 55 | + {\renewcommand\theinnerresult{#1}\innerresult} |
| 56 | + {\endinnerresult} |
| 57 | + |
51 | 58 | \title{All the rules we know}
|
52 | 59 | \date{13 October 2023}
|
53 | 60 | \author{}
|
@@ -192,4 +199,111 @@ \section*{Chapter 1.A}
|
192 | 199 | Here $\lambda \in \F$ and $(x_1, \ldots, x_n) \in \F^n$.
|
193 | 200 | \end{definition}
|
194 | 201 |
|
| 202 | +\newpage |
| 203 | + |
| 204 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 205 | +\section*{Chapter 1.B} |
| 206 | + |
| 207 | +\begin{definition}{1.18}[addition, scalar multiplication] |
| 208 | +An \defn{addition} on a set $V$ is a function that assigns an element $u + v \in V$ to each pair of elements $u, v \in V$. |
| 209 | + |
| 210 | +A \defn{scalar multiplication} on a set $V$ is a function that assigns an element $\lambda v \in V$ to each $\lambda \in \F$ and each $v \in V$. |
| 211 | +\end{definition} |
| 212 | + |
| 213 | +\begin{definition}{1.19}[vector space] |
| 214 | +A \defn{vector space over $\F$} is a set $V$ along with an addition on $V$ and a scalar multiplication on $V$ such that the following properties hold: |
| 215 | + |
| 216 | +\defn{commutativity} |
| 217 | +\begin{forceindent} |
| 218 | +$u + v = v + u$ for all $u, v \in V$; |
| 219 | +\end{forceindent} |
| 220 | + |
| 221 | +\defn{associativity} |
| 222 | +\begin{forceindent} |
| 223 | +$(u + v) + w = u + (v + w)$ and $(ab)v = a(bv)$ for all $u, v, w \in V$ and all $a, b \in \F$; |
| 224 | +\end{forceindent} |
| 225 | + |
| 226 | +\defn{additive identity} |
| 227 | +\begin{forceindent} |
| 228 | +there exists an element $0 \in V$ such that $v + 0 = v$ for all $v \in V$; |
| 229 | +\end{forceindent} |
| 230 | + |
| 231 | +\defn{additive inverse} |
| 232 | +\begin{forceindent} |
| 233 | +for every $v \in V$, there exists $w \in V$ such that $v + w = 0$; |
| 234 | +\end{forceindent} |
| 235 | + |
| 236 | +\defn{multiplicative identity} |
| 237 | +\begin{forceindent} |
| 238 | +$1v = v$ for all $v \in V$; |
| 239 | +\end{forceindent} |
| 240 | + |
| 241 | +\defn{distributive property} |
| 242 | +\begin{forceindent} |
| 243 | +$a (u + v) = au + av$ and $(a + b)v = av + bv$ for all $a, b \in \F$ and all $u, v \in V$. |
| 244 | +\end{forceindent} |
| 245 | +\end{definition} |
| 246 | + |
| 247 | +\begin{definition}{1.20}[vector, point] |
| 248 | +Elements of a vector space are called \defn{vectors} or \defn{points}. |
| 249 | +\end{definition} |
| 250 | + |
| 251 | +\begin{definition}{1.21}[real vector space, complex vector space] |
| 252 | +A vector space over $\R$ is called a \defn{real vector space}. |
| 253 | + |
| 254 | +A vector space over $\C$ is called a \defn{complex vector space}. |
| 255 | +\end{definition} |
| 256 | + |
| 257 | +\begin{notation}{1.23}[$\F^S$] |
| 258 | +If $S$ is a set, $\F^S$ denotes the set of functions from $S$ to $\F$. |
| 259 | + |
| 260 | +For $f, g \in \F^S$ the \defn{sum} $f + g \in \F^S$ is the function defined by |
| 261 | +$$ |
| 262 | +(f + g)(x) = f(x) + g(x) |
| 263 | +$$ |
| 264 | +for all $x \in S$. |
| 265 | + |
| 266 | +For $\lambda \in \F$ and $f \in \F^S$, the \defn{product} $\lambda f \in \F^S$ is the function defined by |
| 267 | +$$ |
| 268 | +(\lambda f)(x) = \lambda f(x) |
| 269 | +$$ |
| 270 | +for all $x \in S$. |
| 271 | +\end{notation} |
| 272 | + |
| 273 | +\begin{notation}{1.27}[$-v, w - v$] |
| 274 | +Let $v, w \in V$. Then |
| 275 | +\begin{enumerate} |
| 276 | +\item $-v$ denotes the additive inverse of $v$; |
| 277 | +\item $w - v$ is defined to be $w + (-v)$. |
| 278 | +\end{enumerate} |
| 279 | +\end{notation} |
| 280 | + |
| 281 | +\begin{notation}{1.28}[$V$] |
| 282 | +$V$ denotes a vector space over $\F$. |
| 283 | +\end{notation} |
| 284 | + |
| 285 | +The following rules can all derived from the definition of a vector space. |
| 286 | + |
| 287 | +\begin{result}{1.25}[Unique additive identity] |
| 288 | +A vector space has a unique additive identity. |
| 289 | +\end{result} |
| 290 | + |
| 291 | +\begin{result}{1.26}[Unique additive inverse] |
| 292 | +Every element in a vector space has a unique additive inverse. |
| 293 | +\end{result} |
| 294 | + |
| 295 | +\begin{result}{1.29}[The number $0$ times a vector] |
| 296 | +$0v = 0$ for every $v \in V$. |
| 297 | +\end{result} |
| 298 | + |
| 299 | +\begin{result}{1.30}[A number times the vector $0$] |
| 300 | +$a0 = 0$ for every $a \in \F$. |
| 301 | +\end{result} |
| 302 | + |
| 303 | +\begin{result}{1.31}[The number $-1$ times a vector] |
| 304 | +$(-1)v = -v$ for every $v \in V$. |
| 305 | +\end{result} |
| 306 | + |
| 307 | +\newpage |
| 308 | + |
195 | 309 | \end{document}
|
0 commit comments