
STACERBOT: A STACKTRACE SEARCH ENGINE FOR STACK OVERFLOW

Md Abdullah Al Alamin

University Of Calgary
Email: mdabdullahal.alamin@ucalgary.ca

ABSTRACT

We as software developers or researchers very often get stack-
trace error messages while we are trying to write some code
or install some packages. Many times these error messages
are very obscure and verbose; do not make much sense to us.
There is a good chance that someone else has also faced simi-
lar issues probably shared similar stacktrace in various online
developers’ forums. However traditional google searches or
other search engines are not very helpful to find web pages
with similar stacktraces. In order to address this problem, we
have developed a web interface; a better search engine: as an
outcome of this research project where users can find appro-
priate stack overflow posts by submitting the whole stacktrace
error message. The current developed solution can serve real-
time parallel user queries with top-matched stack overflow
posts within 50 seconds using a server with 300GB RAM.
This study provides a comprehensive overview of the NLP
techniques used in this study and an extensive overview of
the research pipeline. This comprehensive result, limitations,
and computational overhead mentioned in this study can be
used by future researchers and software developers to build
a better solution for this same problem or similar large-scale
text matching-related tasks.

1. INTRODUCTION

Problem background. We often get error messages when
we try to develop some application, install some packages,
set up a development environment. We get these error mes-
sages called stacktrace (Fig. 5). So, most of the time we
select a few important lines from the error messages and try
to make a google search or Stack Overflow search to find rel-
evant Stack Overflow posts to solve the issue. Most of the
time this approach works. However many times this does not
work specially in a situation where the stacktrace is verbose
with generic information (Fig. 2). In these situations usually,
even through there are Stack Overflow posts with a similar
stacktrace a google search does not provide Stack Overflow
relevant Posts link because that search engine is not designed
to search and find stacktrace error message. For example, for
the above error message in Fig. 2 there is an Stack Overflow
post “TensorFlow 2.5 Mac M1 - Installing problem compat-

ibility with NumPy library / Conda env” in Q68996176 which
has an accepted solution

conda install -c conda-forge openblas

to solve the issue. Interestingly this solves the problem but a
google search with sub-string of the stacktrace fails to get the
link of this stack overflow post and its solution.

Problem Motivation. Nowadays, there are many online
forums –Stack Overflow, GitHub Issue page– where devel-
opers share their error messages and ask for help from the
community members. Many times the community members
provide useful suggestions on how to overcome those issues.
So, such discussions are of great value to the users who are
facing similar problems. However, the standard search en-
gines – Google search or Stack Overflow search engine – are
not designed to search and match the whole stacktrace error
message which can be hundreds of lines in some cases. So,
the standard search engines fail to search march similar stack-
trace error messages. In this research problem, we intend to
address this issue.

Research Objective. There are some other studies
that try to find a solution from analyzing stacktrace error
messages[1, 16, 8]. However, the research objective of this
study is to explore the computational limitations of differ-
ent NLP techniques to build a search engine to address this
issue. There are many NLP techniques that can be used to
accomplish this task and for this project we employ a well
known NLP technique called Term Frequency Inverse Docu-
ment Frequency (TF-IDF) [13] to build a document index and
build a web interface which will provide top matched stack
overflow posts based on the provided raw large stacktrace
error message.

Final Outcome. The final outcome of this study is the
comprehensive research methodology used in this study (Sec-
tion 3) as well as discussion (Section 5) of some of the funda-
mental strengths and weaknesses of this study. See the Sec-
tion 4 for details.

Replication Package: The code and data are shared in:
https://github.com/al-alamin/SO-Error-Finder/

2. DATASET

For this study, we used the most popular Q&A site, Stack Overflow
(SO), where developers from diverse background discussion about

https://stackoverflow.com/questions/68996176/
https://github.com/al-alamin/SO-Error-Finder/


Fig. 1. Example of a stacktrace error message

Fig. 2. Another example of a long stacktrace error message

various software and hardware related issues [2]. For this study, We
downloaded SO data dump [4] of July 2021 which was one of the
latest dataset available during the starting of this project. We used
the contents of “Post.xml” file, which contained information about
each post like the post’s unique ID, type (Question or Answer), ti-
tle, body, associated tags, creation date, view-count, etc. Our data
dump included discussion of 12 years from July 2008 to July 2021
and contained around 50M posts. Total 11M users from all over the
world participated in the discussions.

Overview of dataset attributes. “Posts.xml” contains 22 at-
tributes: “Id”, “PostTypeId”, “AcceptedAnswerId”, “ParentId”,
“CreationDate”, “DeletionDate”, “Score”, “ViewCount”, “Body”,
“OwnerUserId”, “OwnerDisplayName”, “LastEditorUserId”, “LastE-
ditorDisplayName”, “LastEditDate”, “LastActivityDate”, “Title”,
“Tags”, “AnswerCount”, “CommentCount”, “FavoriteCount”, “Closed-
Date”, “CommunityOwnedDate”, “ContentLicense”.

Among these 22 attributes we are mostly interested in the “ID”:
Question Id, “Title”: Title of the post, “Body”: contains the text of
the stack overflow posts.

3. EXPERIMENT SETUP

In this Section the overall research methodology is described. We
also provide detail description of the NLP technique used in this
research on our selected dataset (2)

3.1. Data Collection

First we collected Stack exchange data dump[4] got “stackoverflow.com-
Posts.7z” file. Then we moved this dataset to ARC cluster where we
extracted this .7z file and got Posts.xml file of size around 50GB.
Later part of the experiments processed this XML file to a more
usable format.

Fig. 3. Finding the appropriate Stack Overflow Posts with
relevant stacktrace.

Fig. 4. Final output of our systems based the stacktrace query

3.2. Data processing

After data collection, some of the data processing steps are described
below.

Converting XML files to CSV files. In the first step, first, we
need to convert the XML file to a CSV file so that it can be extracted
and processed easily via various NLP data processing libraries such
as Pandas[10]. During this project, I had to attempt several times to
successfully convert this “Posts.xml” file to “Posts.csv” file because
there was some syntax error in the original XML file that I needed
to handle and at the same time I had to process this XML file se-
quentially because the popular LXML[3] library that I used can not
process such a big XML file all at once. The final size of “Posts.csv”
file was around 85GB.

Extracting code segment from posts. The second step of
the task is to extract the code segments from the stack overflow
post. Each Stack Overflow’s post contains the code segments,
i.e., the error messages of stacktrace inside a HTML tag called
<code>Stacktrace code segments </code>. We extract these code
segments from stack overflow posts. In the later steps, we’ll create
a document Index of this code segment so that during query we can
very easily find appropriate Stack Overflow posts. From our dataset,
there were around 33M Stack Overflow Posts that contained some
code segment. We call this 33M extracted code segment our Corpus
C. Corpus is an NLP jargon meaning a collection of text. The final
size of our Corpus C is around 25GB.

Extracting metadata information from posts. The web inter-
face that I demonstrated provides the relevant Stack Overflow posts
with some useful information. To this end we also extracted: “Id”,



Fig. 5. Overall pipeline of research Methodology.

Fig. 6. Web server architecture of request and response

“PostTypeId”, “AcceptedAnswerId”, “ParentId”, “CreationDate”,
“ViewCount”, “Score”. All of these metadata were used by the
heuristic ranking algorithm to ranking the matched posts.

3.3. Query pre-processing.

For this project, we need to create a document index matrix of the
33M code segments that we have extracted. In this way, when a
new stacktrace is provided by the user we can very fast match with
these 33M code segments and get an array of similarity matches of
33M entries. When the Document Index is prepared this matching
happens very fast, usually within 10 to 20 seconds. One of the limi-
tations is that in order to match fast all the data is needed to be stored
in the RAM and thus it takes around 300GB of RAM for this project.

For this project, we used Natural language toolkit (NLTK)
NLTK [9] which is one of the most popular Python libraries for
Natural Language Processing (NLP) tasks. It has a big community
and in this project, it is used for various text processing tasks such
as tokenization, parsing, stemming, tagging, etc. We also used the
popular Gensim [12] python library for creating a bag of words and

Document Index. In order to create the document index, there are
some pre-requisite steps such as word tokenization, creating a word
dictionary which is described below.

3.3.1. NLP text pre-processing

Here the widely used NLP techniques such as creating a word dic-
tionary, bag of words are described in detail with examples.

Word tokenization. This is a process to split a sentence into
a list of words. First, we lowercase the whole stack trace and then
tokenize it. For examples, “I am a Master’s students” will be split in
to an array of words [“i”, “am”, “Master’s”, “student”].

Word Dictionary[14]. After word tokenization, we need to cre-
ate a word dictionary. In this step, each unique word is assigned a
unique integer value. This is a common NLP technique for faster
processing. The dictionary of our final Corpus C contains around
2M unique words this is quite high compared to other NLP tasks.
We have this big Dictionary because in general for NLP tasks during
this process usually use different techniques such as removal of stop
words [15] and for unknown English words they simply assign a spe-
cific int value. But for this project, we could not use such techniques
because many of the stacktrace will contain unknown English words
and which is very important for us to find a good match.

Bag of words [17]. The next step is to create a bag of words
which is basically a map containing the unique word id and its fre-
quency, i.e., the total number of times it appears in each of the sam-
ples posts in our Corpus of Stack Overflow posts.

Term Frequency Inverse Document Frequency (TF-IDF) [13].
This is basically a bag of word models of our text corpus. One addi-
tional benefit of using this is it considers the frequencies and weights
it down. For example, if a word like “function” appears too many
times in our text corpus then it would assign fewer weights to it
compared to a word that is used less frequently (e.g., “Http 403”).
This is a quite useful feature in our case because it helps us to search



and find posts that match most to the search query.

Gensim Document Index [6]. The next step is to build the
document index from our Corpus. Once this index is built we can
use this to make efficient queries like “How similar are each of the
documents (i.e., stacktrace) in the index is to the query document”.
For this project building, this Document Index of our Corpus of size
33GB requires around 24 hours with 250 GB of RAM. Once this
index is built the next step is to generate results for query stacktrace.

3.3.2. Result Generation

Using the document index, we can find Stack Overflow posts with
percentage of the match with the query text. The following section
describes how the results are generated, ranked, and presented.

Matching using Document Index. Let’s provide an example
of how stacktrace queires are matched with our Corpus. First, we
tokenize the query text, then we create a word dictionary based on
our previously built Dictionary and then we create a tf-idf query of
the query text. Based on this we query the document index which
returns an array of 33M entries each entry contains a number from
0 to 1 indicating the match with that query text and the Corpus text.
For this project, we extracted the top 30 Stack overflow Posts that
match most to your query document.

Posts Ranking. In the next step we employ some heuristics to
rank the stack overflow posts. For example, if two Stack Overflow
posts have the same similarity with the query text then the stack over-
flow post which has accepted answers will get a higher position in
the rank. Similarly, in our dataset, each stack overflow question and
answer is considered a stack overflow post. So if the question con-
tains some of the query text as well as if some answers of that discus-
sion also contains similar stacktrace then we assumed that this dis-
cussion may be more relevant to the user and thus provided a higher
position in the final ranking. We used the metadata information to
get all the additional information – does it have accepted answers–
to rank the posts. In summary, the ranking techniques used in this
study are heuristic and can be improved a lot by adding more rules.
Finally after ranking the top three matched stack overflow posts are
returned for display.

Text Summarization. So, from the ranking of the post, we get
the top three stack overflow post. Now before presenting the results
to the users we format it a little bit more (See Fig 4). So from the
extracted metadata, we collect the title of the stack overflow posts
make it a clickable link so that the user can click the click and redi-
rect to the original stack overflow post. Then we present the sim-
ilarity score. After that from the metadata, we collect the text that
was used in the original stack overflow post to describe the problem.
Then for this project, I used a pre-trained GPT-2 [11] model for text
summarization. GPT-2 is a very well-known pre-trained NLP model
for such tasks which was trained on 40GB of Internet text. We used
this pre-trained model to generate a text summary which is 25% of
the original text. Our motivation to summarize was that the title of
the question, similarity score as well as summary will help the users
to choose which question might be more relevant to them. In this
project, we observed it takes around 5 sec in CPU and 0.3 sec in
GPU for the model to summarize the three posts. Again, the out-
put format used in this project can be improved a lot for real-world
deployment.

4. RESULT

In this Section, we discuss the final output of this project.

4.1. Web interface: real-time query processing.

One of the outcomes of this project is to build a tool that actually re-
turns top-matched stack overflow posts given a stacktrace error mes-
sage. To this end, we build a web interface using Flask Python web
framework [7]. Figure 6 provides a high level architecture of the web
interface. For example, there is a central server that first initializes,
i.e., loads up the document index of our Corpus. This takes around
30 min and 300GB of RAM. After that, the webserver is ready to
process any query in real-time – 50 sec– and as this uses HTTP pro-
tocol and every module is independent parallel requests can also be
processed. First, the webserver pre-processes in the query text as
mentioned in the previous subsection. After that, it queries the doc-
ument index and finds the top 30 matched stack overflow questions
which take around 20-35 sec. When the top questions are prepared
then heuristics ranking algorithm, text summarization, result format-
ting is done using metadata information. This whole process takes
around 40-45 sec and the user is provided an HTTP response similar
as Fig 4.

Quality of the result. During and after developing the systems
we found the systems perform quite well in providing relevant Stack
Overflow questions. For example, if take the following code seg-
ments from the Stack Overflow posts Q9626990 and use our system
to make a prediction it provides three stack overflow posts. “Error:
failed to fetch from registry: kanso” in Q26136411 with 98% match
and ‘message failed to fetch from registry while trying to install any
module” in Q12913141 with 97% match. Both of which contain sim-
ilar stacktrace with npm node error messages. The video demonstra-
tion provides better visualization of the output.

npm ERR! Error: SSL Error: SELF_SIGNED_CERT_IN_CHAIN
npm ERR! at ClientRequest.<anonymous> (/usr/lib/node_modules/npm/node_modules/request/main.js:252:28)
npm ERR! at ClientRequest.emit (events.js:67:17)
npm ERR! at HTTPParser.onIncoming (http.js:1261:11)
npm ERR! at HTTPParser.onHeadersComplete (http.js:102:31)
npm ERR! at CleartextStream.ondata (http.js:1150:24)
npm ERR! at CleartextStream._push (tls.js:375:27)
npm ERR! at SecurePair.cycle (tls.js:734:20)
npm ERR! at EncryptedStream.write (tls.js:130:13)
npm ERR! at Socket.ondata (stream.js:38:26)
npm ERR! at Socket.emit (events.js:67:17)
npm ERR! Report this *entire* log at:
npm ERR! <http://github.com/isaacs/npm/issues>
npm ERR! or email it to:
npm ERR! <npm-@googlegroups.com>
npm ERR!
npm ERR! System Linux 2.6.38-13-generic
npm ERR! command "node" "/usr/bin/npm" "install" "jed"
npm ERR! node -v v0.6.12
npm ERR! npm -v 1.0.104

4.2. Outcome

The outcome of the study is two fold. The first one is a theoreti-
cal discussion of the NLP technique that is used in this study. Fu-
ture works can benefit from this to solve similar problems. Then
the second part is the discussion of the computational complexity.
This may provide valuable insights for future researchers who want
to undertake similar tasks. For example, the very excessive expo-
nential memory requirement of the current model may be a good
indication to look for other approaches depending on the system re-
quirement and limitations.

As we mentioned earlier the web interface requires around
300GB of RAM and thus it is not possible for us to host it on
any free server. However we provide a Video demonstration of

https://stackoverflow.com/questions/9626990/
https://stackoverflow.com/questions/26136411/
https://stackoverflow.com/questions/12913141/


Fig. 7. Overview of asynchronous and real-time computa-
tional complexity

the web-interface: https://github.com/al-alamin/SO-Error-Finder/blob/master/

Project/Project_demonstration.mov

5. DISCUSSION

In this Section, we provide a summary of the computational chal-
lenges and discuss some of the limitations and future improvement
scope for this project.

5.1. Computational Challenges

In this Section, we summarize the computational tasks to execute
this project in both in terms of batch jobs and real-time jobs.

5.1.1. Offline batch processing.

Offline batch jobs denote the tasks we needed to do beforehand. For
example, converting the XML file to a CSV file, creating the docu-
ment index for future faster search, extracting metadata information
for faster result generation. In summation, all of these batch jobs
took around 80 hours of time in total. Most of these offline jobs
needed moderate RAM to expect the job for creating document in-
dex which needed around 300GB RAM.

5.1.2. Real-time processing.

Real-time jobs denote the tasks of the web interface (Section 4.1)
where users query is processed by the web interface and this requires
around 300GB of RAM. If GPU can be used then the text summa-
rized task reduces to 1%. This web interface can generate results
within 50 sec of the query.

5.2. Limitations

Some limitations of this study are discussed below:

• It takes around 50 sec for the web interface to generate the
result. In order to get useful, the results should be generated
within 2 sec. There is no way the current architecture can do
this. The whole monolithic design will have to be broken up
and designed in a more micro-service architecture.

• Many of the offline batch job tasks are written in Python li-
brary which uses only one CPU. Thus some of the tasks such
as XML to CSV conversion code could have been written in
a parallel way. However, considering the time improvement

and the time it would take to rewrite those codes for paral-
lelization; we skipped this part for this study.

• The solution used for this project has exponential memory
complexity which is not ideal for large datasets. If the dataset
size were twice as much as this then probably this system
would have taken terabytes of RAM which is not always a
feasible solution.

• There are some other NLP approaches to find similarity
among multiple texts such as Cosine Similarity [5] which
were not explored properly during this study.

5.3. Scope for improvement

Some future improvement strategies are discussed below:

• The heuristic algorithms used in this study to rank the posts
can be improved. For example, posts score and view count
can be considered in the ranking.

• The current systems only search for Stack Overflow. How-
ever, the dataset contains information related to other stack
exchange sites such as “AskUbuntu”, “Serverfault”, “Super
User” which also contains many of the relevant stacktrace.
Future improvement can incorporate those.

5.4. Experiment Environment Acknowledgement.

All the experiments for this study were conducted in the ARC and
TALC cluster of the University of Calgary.

6. CONCLUSION

For this project, we developed a computationally expensive web in-
terface that allows users to search for relevant Stack Overflow Posts
based on the stacktrace error messages. The main limitation for this
project was exponential memory limitation which requires around
300 GB of RAM to build a document index and generate results in
real-time. Despite some of the obvious limitations of this project,
we do believe this system can be helpful for users to find useful
relevant stack overflow posts from verbose, obscure stacktrace mes-
sages. The research methodologies and described strengths and lim-
itations of the proposed approach will help future researchers or de-
velopers to make better decision for similar tasks.

7. REFERENCES

[1] D. C. Arnold, D. H. Ahn, B. R. De Supinski, G. L. Lee, B. P.
Miller, and M. Schulz. Stack trace analysis for large scale de-
bugging. In 2007 IEEE International Parallel and Distributed
Processing Symposium, pages 1–10. IEEE, 2007.

[2] A. Barua, S. W. Thomas, and A. E. Hassan. What are de-
velopers talking about? an analysis of topics and trends in
stack overflow. Empirical Software Engineering, 19(3):619–
654, 2014.

[3] S. Behnel, M. Faassen, and I. Bicking. lxml: Xml and html
with python, 2005.

[4] S. Exchange. Stack exchange data dump . Available:
https://archive.org/details/stackexchange,
2020. [Online; accessed 10-December-2021].

https://github.com/al-alamin/SO-Error-Finder/blob/master/Project/Project_demonstration.mov
https://github.com/al-alamin/SO-Error-Finder/blob/master/Project/Project_demonstration.mov
https://archive.org/details/stackexchange


[5] M. Faruqui, Y. Tsvetkov, P. Rastogi, and C. Dyer. Problems
with evaluation of word embeddings using word similarity
tasks. arXiv preprint arXiv:1605.02276, 2016.

[6] Gensim. Gensim Document similarity queries . Avail-
able: https://radimrehurek.com/gensim/
similarities/docsim.html, 2021. [Online; ac-
cessed 10-December-2021].

[7] M. Grinberg. Flask web development: developing web appli-
cations with python. ” O’Reilly Media, Inc.”, 2018.

[8] Y. Gu, J. Xuan, H. Zhang, L. Zhang, Q. Fan, X. Xie, and
T. Qian. Does the fault reside in a stack trace? assisting crash
localization by predicting crashing fault residence. Journal of
Systems and Software, 148:88–104, 2019.

[9] E. Loper and S. Bird. Nltk: The natural language toolkit. arXiv
preprint cs/0205028, 2002.

[10] W. McKinney et al. pandas: a foundational python library for
data analysis and statistics. Python for high performance and
scientific computing, 14(9):1–9, 2011.

[11] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever,
et al. Language models are unsupervised multitask learners.
OpenAI blog, 1(8):9, 2019.

[12] Radim, P. Sojka, et al. Gensim—statistical semantics in
python. Retrieved from genism. org, 2011.

[13] J. Ramos et al. Using tf-idf to determine word relevance in doc-
ument queries. In Proceedings of the first instructional confer-
ence on machine learning, volume 242, pages 29–48. Citeseer,
2003.

[14] M. Silberztein. Architecture for nlp. INTEX pour la Linguis-
tique et le traitement automatique des langues, (1):351, 2004.

[15] W. J. Wilbur and K. Sirotkin. The automatic identification
of stop words. Journal of information science, 18(1):45–55,
1992.

[16] C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and
H. Mei. Boosting bug-report-oriented fault localization with
segmentation and stack-trace analysis. In 2014 IEEE Inter-
national Conference on Software Maintenance and Evolution,
pages 181–190. IEEE, 2014.

[17] Y. Zhang, R. Jin, and Z.-H. Zhou. Understanding bag-of-words
model: a statistical framework. International Journal of Ma-
chine Learning and Cybernetics, 1(1-4):43–52, 2010.

https://radimrehurek.com/gensim/similarities/docsim.html
https://radimrehurek.com/gensim/similarities/docsim.html

	 Introduction
	 Dataset
	 Experiment Setup
	 Data Collection
	 Data processing
	 Query pre-processing.
	 NLP text pre-processing
	 Result Generation


	 Result
	 Web interface: real-time query processing.
	 Outcome

	 Discussion
	 Computational Challenges
	 Offline batch processing.
	 Real-time processing.

	 Limitations
	 Scope for improvement
	 Experiment Environment Acknowledgement.

	 Conclusion
	 References

