-
Notifications
You must be signed in to change notification settings - Fork 1
/
0133--clone-graph.js
116 lines (109 loc) · 4.23 KB
/
0133--clone-graph.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
// 133. Clone Graph
// https://leetcode.com/problems/clone-graph/
// Medium
//
// My Solution on LeetCode:
// https://leetcode.com/discuss/topic/3392084/javascriptphp-bfs-dfs-approaches/
//
// Given a reference of a node in a connected undirected graph.
// Return a deep copy (clone) of the graph.
// Each node in the graph contains a value (int) and a list (List[Node]) of its neighbors.
//
// class Node {
// public int val;
// public List<Node> neighbors;
// }
//
// Test case format:
// For simplicity, each node's value is the same as the node's index (1-indexed). For example, the first node with val == 1, the second node with val == 2, and so on. The graph is represented in the test case using an adjacency list.
// An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.
// The given node will always be the first node with val = 1. You must return the copy of the given node as a reference to the cloned graph.
//
// Example 1:
// Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
// Output: [[2,4],[1,3],[2,4],[1,3]]
// Explanation: There are 4 nodes in the graph.
// 1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
// 2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
// 3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
// 4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
// Example 2:
// Input: adjList = [[]]
// Output: [[]]
// Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.
// Example 3:
// Input: adjList = []
// Output: []
// Explanation: This an empty graph, it does not have any nodes.
//
// Constraints:
// The number of nodes in the graph is in the range [0, 100].
// 1 <= Node.val <= 100
// Node.val is unique for each node.
// There are no repeated edges and no self-loops in the graph.
// The Graph is connected and all nodes can be visited starting from the given node.
/**
* // Definition for a Node.
* function Node(val, neighbors) {
* this.val = val === undefined ? 0 : val;
* this.neighbors = neighbors === undefined ? [] : neighbors;
* };
*/
/**
* @param {Node} node
* @return {Node}
*/
// DFS approach
var cloneGraph_____DFS = function (node) {
// DFS approach
// 1. create a new node
// 2. add the new node to the visited map
// 3. for each neighbor of the node
// 4. if the neighbor is not in the visited map
// 5. create a new node
// 6. add the new node to the visited map
// 7. add the new node to the neighbors of the new node
if (!node) return null;
let dfs = (node, visited) => {
if (visited.has(node)) return visited.get(node);
let newNode = new Node(node.val);
visited.set(node, newNode);
for (let neighbor of node.neighbors) {
newNode.neighbors.push(dfs(neighbor, visited));
}
return newNode;
}
return dfs(node, new Map());
}
// BFS approach
var cloneGraph_________BFS = function (node) {
// BFS approach
// 1. create a new node
// 2. add the new node to the queue
// 3. add the new node to the visited map
// 4. while the queue is not empty
// 5. get the first node from the queue
// 6. for each neighbor of the node
// 7. if the neighbor is not in the visited map
// 8. create a new node
// 9. add the new node to the queue
// 10. add the new node to the visited map
// 11. add the new node to the neighbors of the new node
if (!node) return null;
let newNode = new Node(node.val);
let queue = [node];
let visited = new Map();
visited.set(node, newNode);
while (queue.length > 0) {
let currentNode = queue.shift();
for (let neighbor of currentNode.neighbors) {
if (!visited.has(neighbor)) {
let newNeighbor = new Node(neighbor.val);
queue.push(neighbor);
visited.set(neighbor, newNeighbor);
}
visited.get(currentNode).neighbors.push(visited.get(neighbor));
}
}
return newNode;
};