-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathunet_create_train.py
215 lines (171 loc) · 8.13 KB
/
unet_create_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# unet_create_train.py
# Created 2023-02-04
# contains functions for creating, training, and testing a neural network for identifying
# forest fires in images
import tensorflow as tf
from tensorflow import image
from tensorflow.keras.utils import plot_model
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, Dropout, Flatten, MaxPooling2D, UpSampling2D, Activation
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import sys
# Tensorflow configuration settings
#tf.config.experimental_run_functions_eagerly(True)
#gpu_devices = tf.config.experimental.list_physical_devices('GPU')
#tf.config.experimental.set_memory_growth(gpu_devices[0], True)
def import_classification_datasets(image_size, batch_size):
# Create an ImageDataGenerator to load the images
image_datagen = ImageDataGenerator(rescale=1/255, validation_split=0.2)
test_image_datagen = ImageDataGenerator(rescale=1/255)
no_fire_train_dir = 'D:/UAF/CS Capstone/Datasets/No_Fire_Images/Training/'
no_fire_test_dir = 'D:/UAF/CS Capstone/Datasets/No_Fire_Images/Training/'
fire_train_dir = 'D:/UAF/CS Capstone/Datasets/Fire_Images/Training/'
fire_test_dir = 'D:/UAF/CS Capstone/Datasets/Fire_Images/Test/'
### No Fire Datasets ###
no_fire_train_ds = image_datagen.flow_from_directory(
no_fire_train_dir,
target_size=image_size,
batch_size=batch_size,
class_mode='input',
color_mode='rgb',
subset='training')
no_fire_validation_ds = image_datagen.flow_from_directory(
no_fire_test_dir,
target_size=image_size,
batch_size=batch_size,
class_mode='input',
color_mode='rgb',
subset='validation')
no_fire_test_ds = test_image_datagen.flow_from_directory(
no_fire_test_dir,
target_size=image_size,
batch_size=batch_size,
class_mode='input',
color_mode='rgb')
### Fire Datasets ###
fire_train_ds = image_datagen.flow_from_directory(
fire_train_dir,
target_size=image_size,
batch_size=batch_size,
class_mode='input',
color_mode='rgb',
subset='training')
fire_validation_ds = image_datagen.flow_from_directory(
fire_train_dir,
target_size=image_size,
batch_size=batch_size,
class_mode='input',
color_mode='rgb',
subset='validation')
fire_test_ds = test_image_datagen.flow_from_directory(
fire_test_dir,
target_size=image_size,
batch_size=batch_size,
class_mode='input',
color_mode='rgb')
return no_fire_train_ds, no_fire_validation_ds, no_fire_test_ds, fire_train_ds, fire_validation_ds, fire_test_ds
def import_segmentation_dataset(image_size, batch_size):
# Create an ImageDataGenerator to load the images
image_datagen = ImageDataGenerator(rescale=1/255, validation_split=0.2)
mask_datagen = ImageDataGenerator(rescale=1/255, validation_split=0.2)
image_dir = 'D:/UAF/CS Capstone/Datasets/Segmentation/Images'
mask_dir = 'D:/UAF/CS Capstone/Datasets/Segmentation/Masks'
### Image Datasets ###
image_train_ds = image_datagen.flow_from_directory(
image_dir,
target_size=image_size,
batch_size=batch_size,
class_mode=None,
shuffle=True,
subset='training')
image_val_ds = image_datagen.flow_from_directory(
image_dir,
target_size=image_size,
batch_size=batch_size,
class_mode=None,
shuffle=True,
subset='validation')
### Masks Datasets ###
mask_train_ds = mask_datagen.flow_from_directory(
mask_dir,
target_size=image_size,
batch_size=batch_size,
class_mode=None,
shuffle=True,
subset='training')
mask_val_ds = mask_datagen.flow_from_directory(
mask_dir,
target_size=image_size,
batch_size=batch_size,
class_mode=None,
shuffle=True,
subset='validation')
train_ds = zip(image_train_ds, mask_train_ds)
val_ds = zip(image_val_ds, mask_val_ds)
return train_ds, val_ds
def create_unet_model(input_shape):
# Encoder
inputs = tf.keras.layers.Input(shape=input_shape, name="Input")
enc1 = tf.keras.layers.Conv2D(filters=32, kernel_size=3, activation='relu', padding='same', name='Conv1')(inputs)
pool1 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), padding='same', name='MaxPool1')(enc1)
enc2 = tf.keras.layers.Conv2D(filters=64, kernel_size=3, activation='relu', padding='same', name='Conv2')(pool1)
pool2 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), padding='same', name='MaxPool2')(enc2)
enc3 = tf.keras.layers.Conv2D(filters=128, kernel_size=3, activation='relu', padding='same', name='Conv3')(pool2)
pool3 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), padding='same', name='MaxPool3')(enc3)
# Decoder
dec1 = tf.keras.layers.Conv2D(filters=128, kernel_size=3, activation='relu', padding='same', name='Conv5')(pool3)
up1 = tf.keras.layers.UpSampling2D(size=(2, 2), name='Up1')(dec1)
concat1 = tf.keras.layers.concatenate([enc3, up1], axis = 3, name='Concat1')
dec2 = tf.keras.layers.Conv2D(filters=64, kernel_size=3, activation='relu', padding='same', name='Conv6')(concat1)
up2 = tf.keras.layers.UpSampling2D(size=(2, 2), name='Up2')(dec2)
up2_cropped = tf.keras.layers.Cropping2D(cropping=((1, 0), (1, 0)), name='Crop1')(up2)
concat2 = tf.keras.layers.concatenate([enc2, up2_cropped], axis = 3, name='Concat2')
dec3 = tf.keras.layers.Conv2D(filters=32, kernel_size=3, activation='relu', padding='same', name='Conv7')(concat2)
up3 = tf.keras.layers.UpSampling2D(size=(2, 2), name='Up3')(dec3)
concat3 = tf.keras.layers.concatenate([enc1, up3], axis = 3, name='Concat3')
outputs = tf.keras.layers.Conv2D(filters=3, kernel_size=3, activation='sigmoid', padding='same', name='Output')(concat3)
# U-Net Model in total
unet = tf.keras.models.Model(inputs=inputs, outputs=outputs, name='U-Net')
return unet
# Structural Similarity Index Measure loss function
def ssim_loss(y_true, y_pred):
return 1.0 - tf.reduce_mean(image.ssim(y_true, y_pred, max_val=1.0))
def train(model, train_ds, validation_ds, epochs):
model.fit(train_ds, validation_data=validation_ds, epochs=epochs)
return model
def main():
# Train Setup
#image_size = (3480, 2160) # Delete cropped layer to make this dimensionally fit
image_size = (254, 254)
#batch_size = 1
batch_size = 16
no_fire_train_ds, no_fire_validation_ds, no_fire_test_ds, fire_train_ds, fire_validation_ds, fire_test_ds = import_classification_datasets(image_size, batch_size)
#train_ds, val_ds = import_segmentation_dataset(image_size, batch_size)
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
print(tf.config.list_physical_devices('GPU'))
# Create and save architecture as figure
image_shape = image_size + (3, )
model = create_unet_model(image_shape)
# Build model and print the summary
model.build((None, ) + image_shape)
plot_dir = f'C:/Users/Hunter/Desktop/Spring 2023/CS Capstone/GitHub/ForestFireDetection/Models/architectures/forest_fire_unet_{image_size[0]}x{image_size[1]}.png'
plot_model(model, to_file=plot_dir, show_shapes=True)
model.summary()
# Define hyperparameters
optimizer = 'adam'
loss_function_name = 'ssim'
loss_function = ssim_loss
metrics = ['accuracy']
epochs = 5
# Train
model.compile(optimizer=optimizer, loss=loss_function, metrics=metrics)
model = train(model, no_fire_train_ds, no_fire_validation_ds, epochs)
# Save
model.save(f'C:/Users/Hunter/Desktop/Spring 2023/CS Capstone/GitHub/ForestFireDetection/Models/weights/forest_fire_unet_{image_size[0]}x{image_size[1]}_{optimizer}_{loss_function_name}_{epochs}.h5')
# Evaluate
test_loss = model.evaluate(no_fire_test_ds)
print('Test Loss: {:.2f}'.format(test_loss[0]))
print('Test Accuracy: {:.2f}'.format(test_loss[1]))
return 0
if __name__ == '__main__':
sys.exit(main())