forked from devalab/DeepPocket
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet.py
78 lines (62 loc) · 2.67 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch
import torch.nn as nn
import torch.nn.functional as F
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, padding=1):
super().__init__()
self.block = nn.Sequential(nn.Conv3d(in_channels, out_channels, kernel_size, padding=padding),
nn.BatchNorm3d(out_channels),
nn.ReLU(),
nn.Conv3d(out_channels, out_channels, kernel_size, padding=padding),
nn.BatchNorm3d(out_channels),
nn.ReLU())
def forward(self, x):
out = self.block(x)
return out
class Down(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size_pad,stride=2):
super().__init__()
self.block = nn.Sequential(nn.MaxPool3d(kernel_size_pad, stride=stride), DoubleConv(in_channels, out_channels, 3))
def forward(self, x):
out = self.block(x)
return out
class Up(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size_up,padding=0,stride=2, out_pad=0, upsample=None):
super().__init__()
if upsample:
self.up_s = nn.Upsample(scale_factor=2, mode=upsample, align_corners=True)
else:
self.up_s = nn.ConvTranspose3d(in_channels, in_channels // 2, kernel_size_up, stride=stride, padding=padding,
output_padding=out_pad)
self.convT = DoubleConv(in_channels, out_channels, 3)
def forward(self, x1, x2):
out = self.up_s(x1)
out = self.convT(torch.cat((x2, out), dim=1))
return out
class Unet(nn.Module):
def __init__(self, n_classes, upsample):
super().__init__()
self.n_classes = n_classes
self.in1 = DoubleConv(14, 32, 3)
self.down1 = Down(32, 64, 3)
self.down2 = Down(64, 128, 3)
self.down3 = Down(128, 256, 3)
factor = 2 if upsample else 1
self.down4 = Down(256, 512 // factor, 3)
self.up1 = Up(512, 256 // factor, 3, upsample=upsample,stride=2,out_pad=0)
self.up2 = Up(256, 128 // factor, 3, upsample=upsample)
self.up3 = Up(128, 64 // factor, 3, upsample=upsample,out_pad=1)
self.up4 = Up(64, 32, 3, upsample=upsample)
self.conv = nn.Conv3d(32, self.n_classes, 1)
def forward(self, x):
x1 = self.in1(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.conv(x)
return logits