forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_jit_internal.py
1510 lines (1226 loc) · 51.8 KB
/
_jit_internal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
The weak_script annotation needs to be here instead of inside torch/jit/ so it
can be used in other places in torch/ (namely torch.nn) without running into
circular dependency problems
"""
import ast
import builtins
import collections
import contextlib
import enum
import inspect
import io
import pickle
import sys
import threading
import types
import typing
import warnings
import weakref
from textwrap import dedent
from typing import ( # noqa: F401
Any,
Callable,
Dict,
Final,
ForwardRef,
Generic,
get_args, # new in 3.8
get_origin, # new in 3.8
List,
Optional,
Tuple,
Type,
TypeVar,
Union,
)
import torch
# This is needed. `torch._jit_internal` is imported before `torch.distributed.__init__`.
# Explicitly ask to import `torch.distributed.__init__` first.
# Otherwise, "AttributeError: module 'torch' has no attribute 'distributed'" is raised.
import torch.distributed.rpc
import torch.package._mangling as package_mangling
from torch._awaits import _Await
from torch._C import _Await as CAwait, Future as CFuture
from torch._sources import fake_range, get_source_lines_and_file, parse_def
from torch.futures import Future
IS_PY39_PLUS: Final[bool] = sys.version_info >= (3, 9)
IS_PY310_PLUS: Final[bool] = sys.version_info >= (3, 10)
BuiltinUnionType: Union[Type, Tuple[Type, ...]]
if sys.version_info >= (3, 10):
# NOTE: IS_PY310_PLUS doesn't work with mypy.
# cf. https://mypy.readthedocs.io/en/stable/common_issues.html#python-version-and-system-platform-checks
BuiltinUnionType = types.UnionType
else:
BuiltinUnionType = () # trick: this makes isinstance short circuit.
LockType: Type
try:
import _thread
LockType = _thread.LockType
except ImportError:
import _dummy_thread
LockType = _dummy_thread.LockType
# Wrapper functions that can call either of 2 functions depending on a boolean
# argument
boolean_dispatched: "weakref.WeakKeyDictionary[Callable, Dict[str, Callable]]" = (
weakref.WeakKeyDictionary()
) # noqa: T484
FAKE_FILENAME_PREFIX = "__torch_jit_dataclass"
class SourceLoader:
def __init__(self):
self.content = {}
def cache(self, fn, source):
self.content[fn] = source
def get_source(self, fn):
return self.content.get(fn)
loader = SourceLoader()
def createResolutionCallbackFromEnv(lookup_base):
"""
Creates a resolution callback that will look up qualified names in an
environment, starting with `lookup_base` for the base of any qualified
names, then proceeding down the lookup chain with the resolved object.
You should not use this directly, it should only be used from the other
createResolutionCallbackFrom* functions.
"""
def lookupInModule(qualified_name, module):
if "." in qualified_name:
parts = qualified_name.split(".")
base = parts[0]
remaining_pieces = ".".join(parts[1:])
module_value = getattr(module, base)
return lookupInModule(remaining_pieces, module_value)
else:
return getattr(module, qualified_name)
def parseNestedExpr(expr, module) -> Tuple[Any, int]:
i = 0
while i < len(expr) and expr[i] not in (",", "[", "]"):
i += 1
# Special case logic for the empty Tuple as a subscript (used
# in the type annotation `Tuple[()]`)
if expr[:i] == "()":
return (), i
base = lookupInModule(expr[:i].strip(), module)
assert base is not None, f"Unresolvable type {expr[:i]}"
if i == len(expr) or expr[i] != "[":
return base, i
assert expr[i] == "["
parts = []
while expr[i] != "]":
part_len = 0
i += 1
part, part_len = parseNestedExpr(expr[i:], module)
parts.append(part)
i += part_len
if len(parts) > 1:
return base[tuple(parts)], i + 1
else:
return base[parts[0]], i + 1
def parseExpr(expr, module):
try:
value, len_parsed = parseNestedExpr(expr, module)
assert len_parsed == len(
expr
), "whole expression was not parsed, falling back to c++ parser"
return value
except Exception:
"""
The python resolver fails in several cases in known unit tests, and is intended
to fall back gracefully to the c++ resolver in general. For example, python 2 style
annotations which are frequent in our unit tests often fail with types e.g. int not
resolvable from the calling frame.
"""
return None
return lambda expr: parseExpr(expr, lookup_base)
def createResolutionCallbackFromFrame(frames_up: int = 0):
"""
Creates a function which, given a string variable name,
returns the value of the variable in the scope of the caller of
the function which called createResolutionCallbackFromFrame (by default).
This is used to enable access in-scope Python variables inside
TorchScript fragments.
frames_up is number of additional frames to go up on the stack.
The default value is 0, which correspond to the frame of the caller
of createResolutionCallbackFromFrame. Also for example, if frames_up is set
to 1, then the frame of the caller's caller of createResolutionCallbackFromFrame
will be taken.
For example, the following program prints 2::
def bar():
cb = createResolutionCallbackFromFrame(1)
print(cb("foo"))
def baz():
foo = 2
bar()
baz()
"""
frame = inspect.currentframe()
i = 0
while i < frames_up + 1:
assert frame is not None
frame = frame.f_back
i += 1
assert frame is not None
f_locals = frame.f_locals
f_globals = frame.f_globals
class env:
def __getattr__(self, key):
if key in f_locals:
return f_locals[key]
elif key in f_globals:
return f_globals[key]
elif key in dir(builtins):
return getattr(builtins, key)
return createResolutionCallbackFromEnv(env())
def get_closure(fn):
"""
Get a dictionary of closed over variables from a function
"""
captures = {}
captures.update(fn.__globals__)
for index, captured_name in enumerate(fn.__code__.co_freevars):
captures[captured_name] = fn.__closure__[index].cell_contents
return captures
# [local resolution in python]
# Depending on where a variable is defined, and where it is used, we may
# or may not be able to recover its value when recursively compiling a
# script function. Remember in the general case, a module or function is
# first defined and then later scripted. This means we do not have a
# chance to capture the active frames when the function is defined. Hence any
# name resolution has to happen later on the created closure. The way
# python captures type annotations restricts what we can recover. The
# follow example illustrates the different cases:
#
# class MyGlobalClass:
# ...
# def my_local_scope():
# @torch.jit.script
# class MyClass:
# ...
# @torch.jit.script
# class MyClassUsedAsVar:
# ...
# def eg(x: MyClass, y: MyGlobalClass):
# a_local_capture : Foo
# return MyClassUsedAsVar(x)
#
# MyGlobalClass is defined in the __globals__ dictionary of function
# 'eg', so it is always recoverable. my_local_scope introduces a new local
# variable scope in the function. Classes defined here are only visible as
# local variables. For the case of MyClassUsedAsVar, it is captured
# because it is used as a variable inside the body of the function, and we
# can resolve it using the captures returned from `get_closure`. However,
# the type annotations are not captured by the closure. In Python
# 3.0--3.9, the _value_ of MyClass and MyGlobalClass will be available as
# annotations on `eg``, but starting in Python 4.0, they will represented as
# strings and no longer present. Furthermore, since the body of `eg` does
# not reference those names, they do not appear in the list of closed over
# variables. In Python 2.x, type annotations are in comments, leading to a
# similar situation where their definitions are not available. We anticipate
# that most users will not run into this issue because their modules and
# functions will be defined at a global scope like MyGlobalClass. In cases
# where they are not, it is possible to work around issues by declaring the
# values global in the function.
# In Python 3.9 declaring class as global will make it invisible to
# `inspect.getsource`, see https://bugs.python.org/issue42666 .
# This could be worked around by manualy adding it to `global()` dictionary.
def createResolutionCallbackFromClosure(fn):
"""
Create a resolutionCallback by introspecting the function instead of
looking up the stack for the enclosing scope
"""
closure = get_closure(fn)
class closure_lookup:
# This is a class since `closure` is a dict and it's easier in
# `env_helper` if everything just works with `getattr` calls
def __getattr__(self, key):
if key in closure:
return closure[key]
elif hasattr(typing, key):
return getattr(typing, key)
elif hasattr(builtins, key):
return getattr(builtins, key)
return None
return createResolutionCallbackFromEnv(closure_lookup())
def can_compile_class(cls) -> bool:
# If any of the functions on a type don't have a code object, this type can't
# be compiled and is probably a builtin / bound from C
if is_ignored_fn(cls):
return False
# Ignore the following list of built-in classes.
ignored_builtin_classes = (torch.nn.Module, tuple, list, Exception)
if issubclass(cls, ignored_builtin_classes):
return False
names = cls.__dict__
fns = [
getattr(cls, name)
for name in names
if inspect.isroutine(getattr(cls, name, None))
]
has_code = [hasattr(fn, "__code__") for fn in fns]
return all(has_code)
def get_callable_argument_names(fn) -> List[str]:
"""
Gets names of all POSITIONAL_OR_KEYWORD arguments for callable `fn`.
Returns an empty list when other types of arguments are present.
This is used by `torch.jit.trace` to assign meaningful argument names to
traced functions and modules.
Args:
fn: A callable.
Returns:
Argument names: List[str]
"""
# inspect.signature may fail, give up in that case.
try:
callable_signature = inspect.signature(fn)
except Exception:
return []
argument_names = []
for name, param in callable_signature.parameters.items():
# All four other types of arguments do not map to individual values
# with a keyword as name.
if not param.kind == param.POSITIONAL_OR_KEYWORD:
continue
argument_names.append(name)
return argument_names
def get_annotation_str(annotation):
"""
Convert an AST node containing a type annotation to the string present in the source
that represents the same annotation.
"""
if isinstance(annotation, ast.Name):
return annotation.id
elif isinstance(annotation, ast.Attribute):
return ".".join([get_annotation_str(annotation.value), annotation.attr])
elif isinstance(annotation, ast.Subscript):
# In Python3.9+ subscript indicies are not wrapped in ast.Index
subscript_slice = annotation.slice if IS_PY39_PLUS else annotation.slice.value # type: ignore[attr-defined]
return f"{get_annotation_str(annotation.value)}[{get_annotation_str(subscript_slice)}]"
elif isinstance(annotation, ast.Tuple):
return ",".join([get_annotation_str(elt) for elt in annotation.elts])
elif isinstance(annotation, (ast.Constant, ast.NameConstant)):
return f"{annotation.value}"
# If an AST node is not handled here, it's probably handled in ScriptTypeParser.
return None
def get_type_hint_captures(fn):
"""
Get a dictionary containing type resolution mappings necessary to resolve types
for the literal annotations on 'fn'. These are not considered to be closed-over by fn
and must be obtained separately (e.g. using this function).
Args:
fn: A callable.
Returns:
A Dict[str, Any] containing a mapping from the literal annotations used on
fn to the Python objects they refer to.
"""
# First, try to get the source of the function. We'll need to parse it to find the actual string names
# that were used to annotate the types, since inspect.signature() will only return the class object that
# the annotation refers to, not the string name. If we can't get the source, simply return an empty dict.
# This may happen in cases where the function is synthesized dynamically at runtime.
src = loader.get_source(fn)
if src is None:
src = inspect.getsource(fn)
# Gather a dictionary of parameter name -> type, skipping any parameters whose annotated
# types are strings. These are only understood by TorchScript in the context of a type annotation
# that refers to a class in its own definition, but trying to include a mapping for this in the result
# function would cause infinite recursion because the class is currently being compiled.
# In addition, there is logic in ScriptTypeParser to handle this.
signature = inspect.signature(fn)
name_to_type = {
name: parameter.annotation
for name, parameter in signature.parameters.items()
if parameter.annotation is not inspect.Parameter.empty
and not isinstance(parameter.annotation, str)
}
# Then, get the literal type annotations from the function declaration
# by source inspection. This accounts for the case in which aliases are used
# to annotate the arguments (e.g device_t = torch.device, and then d: device_t).
# frontend.py cannot be used here because it includes _jit_internal, so use ast instead.
a = ast.parse(dedent(src))
if len(a.body) != 1 or not isinstance(a.body[0], ast.FunctionDef):
raise RuntimeError(f"Expected {fn} to be a function")
f = a.body[0]
# Prepare a dictionary of source annotation -> type, which will be the final result of this function,
# by using the parsed AST (f) to reconstruct source annotations as strings for each parameter and mapping
# them to the type object corresponding to the annotation via name_to_type using the parameter name.
annotation_to_type = {}
for arg in f.args.args:
# Get the source type annotation string for this argument if possible.
arg_annotation_str = (
get_annotation_str(arg.annotation) if arg.annotation else None
)
# If the argument has no annotation or get_annotation_str cannot convert it to a string,
# arg_annotation_str will be None. Skip this arg; ScriptTypeParser will probably handle
# this in the latter case.
if arg_annotation_str is None:
continue
# Insert {arg_annotation_str: type} into annotation_to_type if possible. One reason arg_name may not
# be present in name_to_type is that the annotation itself is a string and not a type object
# (common for self-refential annotations in classes). Once again, let ScriptTypeParser handle this.
arg_name = arg.arg
if arg_name in name_to_type:
annotation_to_type[arg_annotation_str] = name_to_type[arg_name]
# If there is a valid return annotation, include it in annotation_to_type. As with argument annotations,
# the literal annotation has to be convertible to a string by get_annotation_str, and the actual type
# of the annotation cannot be a string.
literal_return_annotation = get_annotation_str(f.returns)
valid_literal_annotation = literal_return_annotation is not None
return_annotation = signature.return_annotation
valid_return_annotation_type = (
return_annotation is not inspect.Parameter.empty
and not isinstance(return_annotation, str)
)
if valid_literal_annotation and valid_return_annotation_type:
annotation_to_type[literal_return_annotation] = return_annotation
return annotation_to_type
def createResolutionCallbackForClassMethods(cls):
"""
This looks at all the methods defined in a class and pulls their closed-over
variables into a dictionary and uses that to resolve variables.
"""
# cls is a type here, so `ismethod` is false since the methods on the type
# aren't bound to anything, so Python treats them as regular functions
fns = [
getattr(cls, name)
for name in cls.__dict__
if inspect.isroutine(getattr(cls, name))
]
# Skip built-ins, as they do not have global scope nor type hints
# Needed to support `enum.Enum` derived classes in Python-3.11
# That adds `_new_member_` property which is an alias to `__new__`
fns = [fn for fn in fns if not inspect.isbuiltin(fn) and hasattr(fn, "__globals__")]
captures = {}
for fn in fns:
captures.update(get_closure(fn))
captures.update(get_type_hint_captures(fn))
def lookup_in_class(key):
if key in captures:
return captures[key]
else:
return getattr(builtins, key, None)
return lookup_in_class
def boolean_dispatch(
arg_name, arg_index, default, if_true, if_false, module_name, func_name
):
"""
Dispatches to either of 2 script functions based on a boolean argument.
In TorchScript, the boolean argument must be constant so that the correct
function to use can be determined at compile time.
"""
def fn(*args, **kwargs):
dispatch_flag = default
if arg_name in kwargs:
dispatch_flag = kwargs[arg_name]
elif arg_index < len(args):
dispatch_flag = args[arg_index]
if dispatch_flag:
return if_true(*args, **kwargs)
else:
return if_false(*args, **kwargs)
if if_true.__doc__ is None and if_false.__doc__ is not None:
doc = if_false.__doc__
if_true.__doc__ = doc
elif if_false.__doc__ is None and if_true.__doc__ is not None:
doc = if_true.__doc__
if_false.__doc__ = doc
elif if_false.__doc__ is None and if_true.__doc__ is None:
# neither function has a docstring
doc = None
else:
raise RuntimeError("only one function can have a docstring")
fn.__doc__ = doc
if module_name is not None:
fn.__module__ = module_name
if func_name is not None:
fn.__name__ = func_name
boolean_dispatched[fn] = {
"if_true": if_true,
"if_false": if_false,
"index": arg_index,
"default": default,
"arg_name": arg_name,
}
return fn
class FunctionModifiers:
"""
Used to denote the behavior of a function in TorchScript. See export() and
ignore() for details.
"""
UNUSED = "unused (ignored and replaced with raising of an exception)"
IGNORE = "ignore (leave as a call to Python, cannot be torch.jit.save'd)"
EXPORT = "export (compile this function even if nothing calls it)"
DEFAULT = "default (compile if called from a exported function / forward)"
COPY_TO_SCRIPT_WRAPPER = (
"if this method is not scripted, copy the python method onto the scripted model"
)
_DROP = "_drop (function is fully ignored, declaration can be unscriptable)"
def export(fn):
"""
This decorator indicates that a method on an ``nn.Module`` is used as an entry point into a
:class:`ScriptModule` and should be compiled.
``forward`` implicitly is assumed to be an entry point, so it does not need this decorator.
Functions and methods called from ``forward`` are compiled as they are seen
by the compiler, so they do not need this decorator either.
Example (using ``@torch.jit.export`` on a method):
.. testcode::
import torch
import torch.nn as nn
class MyModule(nn.Module):
def implicitly_compiled_method(self, x):
return x + 99
# `forward` is implicitly decorated with `@torch.jit.export`,
# so adding it here would have no effect
def forward(self, x):
return x + 10
@torch.jit.export
def another_forward(self, x):
# When the compiler sees this call, it will compile
# `implicitly_compiled_method`
return self.implicitly_compiled_method(x)
def unused_method(self, x):
return x - 20
# `m` will contain compiled methods:
# `forward`
# `another_forward`
# `implicitly_compiled_method`
# `unused_method` will not be compiled since it was not called from
# any compiled methods and wasn't decorated with `@torch.jit.export`
m = torch.jit.script(MyModule())
"""
fn._torchscript_modifier = FunctionModifiers.EXPORT
return fn
def unused(fn):
"""
This decorator indicates to the compiler that a function or method should
be ignored and replaced with the raising of an exception. This allows you
to leave code in your model that is not yet TorchScript compatible and still
export your model.
Example (using ``@torch.jit.unused`` on a method)::
import torch
import torch.nn as nn
class MyModule(nn.Module):
def __init__(self, use_memory_efficient):
super().__init__()
self.use_memory_efficient = use_memory_efficient
@torch.jit.unused
def memory_efficient(self, x):
import pdb
pdb.set_trace()
return x + 10
def forward(self, x):
# Use not-yet-scriptable memory efficient mode
if self.use_memory_efficient:
return self.memory_efficient(x)
else:
return x + 10
m = torch.jit.script(MyModule(use_memory_efficient=False))
m.save("m.pt")
m = torch.jit.script(MyModule(use_memory_efficient=True))
# exception raised
m(torch.rand(100))
"""
if isinstance(fn, property):
prop = fn
setattr( # noqa: B010
prop.fget, "_torchscript_modifier", FunctionModifiers.UNUSED
)
if prop.fset:
setattr( # noqa: B010
prop.fset, "_torchscript_modifier", FunctionModifiers.UNUSED
)
return prop
fn._torchscript_modifier = FunctionModifiers.UNUSED
return fn
# No op context manager from python side
class _IgnoreContextManager(contextlib.AbstractContextManager):
def __init__(self, **kwargs):
pass
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
pass
def ignore(drop=False, **kwargs):
"""
This decorator indicates to the compiler that a function or method should
be ignored and left as a Python function. This allows you to leave code in
your model that is not yet TorchScript compatible. If called from TorchScript,
ignored functions will dispatch the call to the Python interpreter. Models with ignored
functions cannot be exported; use :func:`@torch.jit.unused <torch.jit.unused>` instead.
Example (using ``@torch.jit.ignore`` on a method)::
import torch
import torch.nn as nn
class MyModule(nn.Module):
@torch.jit.ignore
def debugger(self, x):
import pdb
pdb.set_trace()
def forward(self, x):
x += 10
# The compiler would normally try to compile `debugger`,
# but since it is `@ignore`d, it will be left as a call
# to Python
self.debugger(x)
return x
m = torch.jit.script(MyModule())
# Error! The call `debugger` cannot be saved since it calls into Python
m.save("m.pt")
Example (using ``@torch.jit.ignore(drop=True)`` on a method):
.. testcode::
import torch
import torch.nn as nn
class MyModule(nn.Module):
@torch.jit.ignore(drop=True)
def training_method(self, x):
import pdb
pdb.set_trace()
def forward(self, x):
if self.training:
self.training_method(x)
return x
m = torch.jit.script(MyModule())
# This is OK since `training_method` is not saved, the call is replaced
# with a `raise`.
m.save("m.pt")
.. testcleanup::
import os
os.remove('m.pt')
"""
if callable(drop):
# used without any args, so drop is actually a function
# @torch.jit.ignore
# def fn(...):
fn = drop
fn._torchscript_modifier = FunctionModifiers.IGNORE
return fn
if not isinstance(drop, bool):
raise RuntimeError(
"Argument to @torch.jit.ignore must be a bool or "
f"a function but got {drop}"
)
# for backwards compat
drop_on_export = kwargs.pop("drop_on_export", None)
if drop_on_export:
warnings.warn(
"ignore(drop_on_export=True) has been deprecated. TorchScript will now drop the function "
"call on compilation. Use torch.jit.unused now. {}",
category=FutureWarning,
)
drop = drop_on_export
elif drop:
warnings.warn(
"ignore(True) has been deprecated. TorchScript will now drop the function "
"call on compilation. Use torch.jit.unused now. {}",
category=FutureWarning,
)
def decorator(fn):
if drop:
fn._torchscript_modifier = FunctionModifiers.UNUSED
else:
fn._torchscript_modifier = FunctionModifiers.IGNORE
return fn
return decorator
def _drop(fn):
fn._torchscript_modifier = FunctionModifiers._DROP
return fn
def _copy_to_script_wrapper(fn):
fn._torchscript_modifier = FunctionModifiers.COPY_TO_SCRIPT_WRAPPER
return fn
def module_has_exports(mod):
for name in dir(mod):
if hasattr(mod, name):
item = getattr(mod, name)
if callable(item):
if get_torchscript_modifier(item) is FunctionModifiers.EXPORT:
return True
return False
# WARNING: should_drop is currently being used by our JIT code coverage plug-in to mark JIT'd code as covered. If you
# rename this function, please update references in tools/coverage_plugins_package/src/coverage_plugins/jit_plugin.py to
# allow JIT'd code to still be covered.
def should_drop(fn) -> bool:
attr = get_torchscript_modifier(fn)
if attr is None:
return False
return attr is FunctionModifiers.UNUSED or attr is FunctionModifiers._DROP
def is_ignored_fn(fn) -> bool:
mod = get_torchscript_modifier(fn)
return (
mod is FunctionModifiers.UNUSED
or mod is FunctionModifiers.IGNORE
or mod is FunctionModifiers._DROP
)
def _is_drop_fn(fn) -> bool:
mod = get_torchscript_modifier(fn)
return mod is FunctionModifiers._DROP
def is_static_fn(cls, fn) -> bool:
return isinstance(inspect.getattr_static(cls, fn, default=None), staticmethod)
def get_static_fn(cls, fn):
return inspect.getattr_static(cls, fn).__func__
def get_torchscript_modifier(fn):
if not callable(fn):
return None
if hasattr(fn, "__func__"):
fn = fn.__func__
return getattr(fn, "_torchscript_modifier", FunctionModifiers.DEFAULT)
def copy_torchscript_modifier(orig, new) -> None:
attr = get_torchscript_modifier(orig)
if attr is None:
return
new._torchscript_modifier = attr
# overloading registration
# overloads get registered in this file, and compiled in torch/jit/__init__.py
# so that they can be imported in nn/functional.py without an import cycle
# qualified_name => list[overload_functions]
_overloaded_fns: Dict[str, List[Callable]] = {} # noqa: T484
_OVERLOAD_EXAMPLE = """
Example usage of overload function:
@torch.jit._overload
def my_function(x: type0) -> type0: # decl 1
pass
@torch.jit._overload
def my_function(x: type1) -> type1: # decl 2
pass
def my_function(x): # implementation
if isinstance(x, type0):
return x
elif isinstance(x, type1):
return x
"""
def get_overload_no_implementation_error_message(kind, obj):
sourcelines, file_lineno, filename = get_source_lines_and_file(obj)
return (
f'Implementation for the {kind} "{_qualified_name(obj)}" is missing. Please make '
f"sure a definition is provided and defined after all overload declarations.\n"
f'File "{filename}", line {file_lineno}:\n'
+ "".join(sourcelines)
+ "\n"
+ _OVERLOAD_EXAMPLE
)
def _check_overload_body(func):
try:
parsed_def = parse_def(func)
except OSError as e:
# Parsing the function definition can raise an OSError if source is unavailable.
# Since this is just an initial check, just raise a warning if this is the case.
warnings.warn(
f"Unable to retrieve source for @torch.jit._overload function: {func}."
)
return
body = parsed_def.ast.body[0].body
def is_pass(x):
return isinstance(x, ast.Pass)
def is_ellipsis(x):
return isinstance(x, ast.Expr) and isinstance(x.value, ast.Ellipsis)
if len(body) != 1 or not (is_pass(body[0]) or is_ellipsis(body[0])):
msg = (
"Only `pass` statement or `...` can be the body of overload declaration:\n"
)
msg += "\n".join(parsed_def.source.split("\n")[:3])
msg += " <- Expecting `pass` or `...` here!\n" + _OVERLOAD_EXAMPLE
raise RuntimeError(msg)
def _overload(func):
_check_overload_body(func)
qual_name = _qualified_name(func)
global _overloaded_fns
fn_overload_list = _overloaded_fns.get(qual_name)
if fn_overload_list is None:
fn_overload_list = []
_overloaded_fns[qual_name] = fn_overload_list
fn_overload_list.append(func)
return func
def _get_fn_overloads(qual_name):
return _overloaded_fns.get(qual_name)
def _clear_fn_overloads(qual_name) -> None:
del _overloaded_fns[qual_name]
def get_class_name_lineno(method) -> Tuple[str, int]:
current_frame = inspect.currentframe()
# one for the get_class_name call, one for _overload_method call
for i in range(2):
assert (
current_frame is not None
) # assert current frame is not an Optional[FrameType]
current_frame = current_frame.f_back
assert current_frame is not None # same here
class_name = current_frame.f_code.co_name
line_no = current_frame.f_code.co_firstlineno
return class_name, line_no
# At the point the decorator is applied to class methods the method
# has no reference to its owning class. _qualified_name would not include
# the class it is defined in, so any methods with the same name in the same file
# would have the same _qualified_name, even if they were defined in different
# classes. This problem only exists in python 2.
# We get around this problem by looking at the stack frame and identifying
# the class name, and throwing an error whenever overloads are used
# when modules of the same name are in the same file
# qualified_name => class name => list[overload_functions]
_overloaded_methods: Dict[str, Dict[str, List[Callable]]] = {} # noqa: T484
# (qualified_name, class name) => class_fileno
_overloaded_method_class_fileno = {}
def _overload_method(func):
_check_overload_body(func)
qual_name = _qualified_name(func)
global _overloaded_methods
class_name_map = _overloaded_methods.get(qual_name, None)
if class_name_map is None:
class_name_map = {}
_overloaded_methods[qual_name] = class_name_map
class_name, line_no = get_class_name_lineno(func)
method_overloads = class_name_map.get(class_name, None)
if method_overloads is None:
method_overloads = []
class_name_map[class_name] = method_overloads
_overloaded_method_class_fileno[(qual_name, class_name)] = line_no
else:
existing_lineno = _overloaded_method_class_fileno[(qual_name, class_name)]
if existing_lineno != line_no:
raise RuntimeError(
"Cannot currently overload the same method name in two different"
" classes with the same name in the same module"
)
method_overloads.append(func)
return func
def _get_overloaded_methods(method, mod_class):
# TODO: __name__ not set for submodules in recursive script
if not hasattr(method, "__name__"):
return None
qual_name = _qualified_name(method)
class_name_map = _overloaded_methods.get(qual_name, None)
if class_name_map is None:
return None
overloads = class_name_map.get(mod_class.__name__, None)
if overloads is None:
return None
method_line_no = get_source_lines_and_file(method)[1]
mod_class_fileno = get_source_lines_and_file(mod_class)[1]
mod_end_fileno = mod_class_fileno + len(get_source_lines_and_file(mod_class)[0])
if not (method_line_no >= mod_class_fileno and method_line_no <= mod_end_fileno):
raise Exception(
"Overloads are not useable when a module is redeclared within the same file: "
+ str(method)
)
return overloads
def is_tuple(ann) -> bool:
if ann is Tuple:
raise_error_container_parameter_missing("Tuple")
# For some reason Python 3.7 violates the Type[A, B].__origin__ == Type rule
if not hasattr(ann, "__module__"):
return False