forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_pytorch_onnx_shape_inference.py
535 lines (465 loc) · 22.4 KB
/
test_pytorch_onnx_shape_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# Owner(s): ["module: onnx"]
import io
import numpy as np
import onnx
import pytorch_test_common
import torch
from pytorch_test_common import skipIfUnsupportedMinOpsetVersion
from torch.onnx import _constants, utils
from torch.onnx._globals import GLOBALS
from torch.onnx._internal import jit_utils
from torch.testing._internal import common_utils
def expect_tensor(scalar_type, shape=None):
def verify(actual_type):
np.testing.assert_equal(actual_type.scalarType(), scalar_type)
# if shape is not None:
# np.testing.assert_equal(actual_type.sizes(), shape)
if shape is not None:
np.testing.assert_equal(actual_type.varyingSizes(), shape)
return verify
def as_graphcontext(graph: torch.Graph) -> jit_utils.GraphContext:
return jit_utils.GraphContext(
graph=graph,
block=graph.block(),
opset=_constants.ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET,
original_node=None, # type: ignore[arg-type]
params_dict={},
env={},
)
def g_op(graph: torch.Graph, op_name: str, *args, **kwargs):
return as_graphcontext(graph).op(op_name, *args, **kwargs)
class TestONNXShapeInference(pytorch_test_common.ExportTestCase):
def setUp(self):
self.opset_version = _constants.ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET
GLOBALS.export_onnx_opset_version = self.opset_version
def run_test(self, g, n, type_assertion_funcs):
if not isinstance(type_assertion_funcs, list):
type_assertion_funcs = [type_assertion_funcs]
torch._C._jit_pass_onnx_graph_shape_type_inference(g, {}, self.opset_version)
for out, type_assertion_func in zip(n.outputs(), type_assertion_funcs):
type_assertion_func(out.type())
def create_empty_graph(self):
g = torch._C.Graph()
# kick off initialization for ConstantMap.
torch._C._jit_pass_onnx_graph_shape_type_inference(g, {}, self.opset_version)
return g
def insert_tensor_constant(self, g, tensor):
return g_op(g, "Constant", value_t=tensor)
def test_cast(self):
# Test cast with input of unknown scalar type.
g = self.create_empty_graph()
input = g.addInput()
cast_out = g_op(g, "Cast", input, to_i=1)
self.run_test(g, cast_out.node(), expect_tensor("Float"))
def test_constant_of_shape(self):
# Test ConstantOfShape with input of onnx::Shape node.
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(1, 2, 3, 4))
shape = g_op(g, "Shape", constant)
constant_of_shape = g_op(
g, "ConstantOfShape", shape, value_t=torch.tensor([2.0])
)
self.run_test(
g, constant_of_shape.node(), expect_tensor("Float", shape=(1, 2, 3, 4))
)
def test_constant_of_shape_static(self):
# Test ConstantOfShape with input of prim::ListConstruct of static tensor
rank = 4
g = self.create_empty_graph()
constants = [
self.insert_tensor_constant(g, torch.tensor(i + 1)) for i in range(rank)
]
shape = g_op(g, "prim::ListConstruct", *constants)
shape.setType(torch._C.ListType.ofInts())
constant_of_shape = g_op(
g, "ConstantOfShape", shape, value_t=torch.tensor([2.0])
)
self.run_test(
g, constant_of_shape.node(), expect_tensor("Float", shape=(1, 2, 3, 4))
)
def test_constant_of_shape_dynamic(self):
# Test ConstantOfShape with input of prim::ListConstruct of dynamic tensor
rank = 4
g = self.create_empty_graph()
inputs = [g.addInput() for i in range(rank)]
shape = g_op(g, "prim::ListConstruct", *inputs)
shape.setType(torch._C.ListType.ofInts())
constant_of_shape = g_op(
g, "ConstantOfShape", shape, value_t=torch.tensor([2.0])
)
self.run_test(
g,
constant_of_shape.node(),
expect_tensor("Float", shape=(None, None, None, None)),
)
def test_gather_dynamic_index(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(
input.type().with_dtype(torch.float).with_sizes([None, 3, 16, 16])
)
indices = g.addInput()
indices.setType(indices.type().with_dtype(torch.int64).with_sizes([None]))
output = g_op(g, "Gather", input, indices, axis_i=1)
self.run_test(
g, output.node(), expect_tensor("Float", shape=([None, None, 16, 16]))
)
def test_gather_scalar_index(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(
input.type().with_dtype(torch.float).with_sizes([None, 3, 16, 16])
)
indices = self.insert_tensor_constant(g, torch.tensor(1))
output = g_op(g, "Gather", input, indices, axis_i=1)
self.run_test(g, output.node(), expect_tensor("Float", shape=([None, 16, 16])))
def test_reshape(self):
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2, 16, 5, 5))
constant_2 = self.insert_tensor_constant(g, torch.tensor([2, 0, -1]))
shape = g_op(g, "Reshape", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(2, 16, 25)))
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2, 16, 5, 4))
constant_2 = self.insert_tensor_constant(g, torch.tensor([-1, 0, 4]))
shape = g_op(g, "Reshape", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(10, 16, 4)))
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2, 16, 5, 4))
constant_2 = self.insert_tensor_constant(g, torch.tensor([-1, 0, 0]))
shape = g_op(g, "Reshape", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(8, 16, 5)))
def test_reshape_symbolic(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_sizes([None, None, 2, 8]))
constant = self.insert_tensor_constant(g, torch.tensor([0, 0, -1]))
output = g_op(g, "Reshape", input, constant)
self.run_test(g, output.node(), expect_tensor(None, shape=(None, None, 16)))
@skipIfUnsupportedMinOpsetVersion(14)
def test_reshape_allowzero(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_sizes([3, 4, 0]))
constant = self.insert_tensor_constant(g, torch.tensor([0, 4, 3]))
output = g_op(g, "Reshape", input, constant, allowzero_i=1)
self.run_test(g, output.node(), expect_tensor(None, shape=(0, 4, 3)))
def test_slice(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_sizes([None, None]))
start_input = g.addInput()
start_input.setType(start_input.type().with_sizes([None]))
end = self.insert_tensor_constant(g, torch.tensor([3]))
axis = self.insert_tensor_constant(g, torch.tensor([0]))
step = self.insert_tensor_constant(g, torch.tensor([1]))
slice = g_op(g, "Slice", input, start_input, end, axis, step)
self.run_test(g, slice.node(), expect_tensor(None, shape=(None, None)))
def test_slice_with_dynamic_start_index(self):
g = self.create_empty_graph()
input = self.insert_tensor_constant(g, torch.ones(2, 3, 4, 5))
start_input = g.addInput()
start_input.setType(start_input.type().with_sizes([2]))
end = self.insert_tensor_constant(g, torch.tensor([3, 4]))
axis = self.insert_tensor_constant(g, torch.tensor([1, -1]))
slice = g_op(g, "Slice", input, start_input, end, axis)
self.run_test(g, slice.node(), expect_tensor(None, shape=(2, None, 4, None)))
def test_broadcast_matmul(self):
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(5, 1, 2))
constant_2 = self.insert_tensor_constant(g, torch.ones(3, 1, 2, 1))
shape = g_op(g, "MatMul", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(3, 5, 1, 1)))
# test when first input is of rank 1
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2))
constant_2 = self.insert_tensor_constant(g, torch.ones(3, 1, 2, 1))
shape = g_op(g, "MatMul", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(3, 1, 1)))
# test when second input is of rank 1
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(5, 1, 2))
constant_2 = self.insert_tensor_constant(g, torch.ones(2))
shape = g_op(g, "MatMul", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(5, 1)))
# test when both inputs are of rank 1
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2))
constant_2 = self.insert_tensor_constant(g, torch.ones(2))
shape = g_op(g, "MatMul", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=()))
def test_expand(self):
g = self.create_empty_graph()
input = g.addInput()
constant = self.insert_tensor_constant(g, torch.ones(2, 4))
input.setType(constant.type().with_sizes([None, None]))
shape = g_op(g, "Shape", input)
expand = g_op(g, "Expand", constant, shape)
self.run_test(g, expand.node(), expect_tensor("Float", shape=(None, None)))
def test_pad(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([3, 320, 100]))
constant = self.insert_tensor_constant(g, torch.ones(6, dtype=torch.long))
none = g_op(g, "prim::Constant").setType(torch.NoneType.get())
pad = g_op(g, "Pad", input, constant, none, mode_s="constant")
self.run_test(g, pad.node(), expect_tensor("Float", shape=(5, 322, 102)))
def test_pad_with_dynamic_input_shape(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([3, None, None]))
constant = self.insert_tensor_constant(g, torch.ones(6, dtype=torch.long))
none = g_op(g, "prim::Constant").setType(torch.NoneType.get())
pad = g_op(g, "Pad", input, constant, none, mode_s="constant")
self.run_test(g, pad.node(), expect_tensor("Float", shape=(5, None, None)))
def test_pad_with_dynamic_pad_size(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([3, 320, 100]))
pad_size = g.addInput()
pad_size.setType(pad_size.type().with_dtype(torch.long).with_sizes([6]))
none = g_op(g, "prim::Constant").setType(torch.NoneType.get())
pad = g_op(g, "Pad", input, pad_size, none, mode_s="constant")
self.run_test(g, pad.node(), expect_tensor("Float", shape=(None, None, None)))
def test_resize(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([4, 32, 64, 64]))
none = g_op(g, "prim::Constant").setType(torch.NoneType.get())
scales = self.insert_tensor_constant(
g, torch.tensor([1, 1, 2, 2], dtype=torch.float)
)
resize = g_op(
g,
"Resize",
input,
none,
scales,
coordinate_transformation_mode_s="align_corners",
cubic_coeff_a_f=-0.75,
mode_s="linear",
nearest_mode_s="floor",
)
self.run_test(g, resize.node(), expect_tensor("Float", shape=(4, 32, 128, 128)))
def test_resize_after_concat(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([4, 32, 64, 64]))
none = g_op(g, "prim::Constant").setType(torch.NoneType.get())
scale_1 = self.insert_tensor_constant(
g, torch.tensor([1, 1], dtype=torch.float)
)
scale_2 = self.insert_tensor_constant(
g, torch.tensor([2, 2], dtype=torch.float)
)
# `scales` values should be statically known due to constant folding in shape inference.
scales = g_op(g, "Concat", scale_1, scale_2, axis_i=0)
resize = g_op(
g,
"Resize",
input,
none,
scales,
coordinate_transformation_mode_s="align_corners",
cubic_coeff_a_f=-0.75,
mode_s="linear",
nearest_mode_s="floor",
)
self.run_test(g, resize.node(), expect_tensor("Float", shape=(4, 32, 128, 128)))
def test_reduce_prod_with_axes(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.long).with_sizes([2]))
reduce_prod = g_op(g, "ReduceProd", input, axes_i=[0])
self.run_test(g, reduce_prod.node(), expect_tensor("Long", shape=(1,)))
def test_reduce_prod_without_axes(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.long).with_sizes([2]))
reduce_prod = g_op(g, "ReduceProd", input)
self.run_test(g, reduce_prod.node(), expect_tensor("Long", shape=(1,)))
def test_proceeding_nodes_use_prim_pack_padded_output_dtype_correctly(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([4, 16]))
length = g.addInput()
length.setType(length.type().with_dtype(torch.long).with_sizes([4]))
padded, batch_size = g_op(g, "prim::PackPadded", input, length, outputs=2)
# `prim::PackPadded` only occurs in tracing mode. Hence its outputs inherits
# shape and data type from traced graph.
padded.setType(padded.type().with_dtype(torch.float).with_sizes([None, None]))
batch_size.setType(batch_size.type().with_dtype(torch.long).with_sizes([None]))
# `Gather` should use the data type of `batch_size` as the data type of its output.
gather_idx = self.insert_tensor_constant(g, torch.tensor([0], dtype=torch.long))
gather = g_op(g, "Gather", batch_size, gather_idx, axis_i=0)
self.run_test(g, gather.node(), expect_tensor("Long", shape=(None,)))
def test_squeeze_after_dynamic_if(self):
from torch.onnx.symbolic_opset11 import squeeze as squeeze11
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([1, None, 5]))
# Type is intentionally not bool to test that
# the added "Cast" node doesn't stop shape inference.
cond = g.addInput()
cond.setType(input.type().with_dtype(torch.int32).with_sizes([1]))
if_op, (if_context, else_context), new_node = jit_utils.add_op_with_blocks(
as_graphcontext(g), "If", cond, n_blocks=2
)
block1_output = if_context.op("Add", input, input)
block2_output = else_context.op("Identity", input)
utils._add_output_to_block(if_context.block, block1_output)
utils._add_output_to_block(else_context.block, block2_output)
if_output = torch._C._jit_pass_fixup_onnx_controlflow_node(
new_node, _constants.ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET
)[0]
torch._C._jit_pass_onnx_node_shape_type_inference(
new_node, {}, _constants.ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET
)
# Exporter will add "If" instead of raw "Squeeze" if it does not know
# that if the dimension it is squeezing has size 1.
squeezed = squeeze11(as_graphcontext(g), if_output, dim=0)
assert squeezed.node().kind() == "onnx::Squeeze"
self.run_test(g, squeezed.node(), expect_tensor("Float", shape=(None, 5)))
class TestONNXCustomOpShapeInference(pytorch_test_common.ExportTestCase):
def setUp(self):
super().setUp()
self.opset_version = _constants.ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET
def test_setType_maintains_output_shape_for_single_custom_op(self):
self.addCleanup(torch.onnx.unregister_custom_op_symbolic, "::linalg_inv", 9)
class CustomInverse(torch.nn.Module):
def forward(self, x):
return torch.inverse(x) + x
def linalg_inv_settype(g, self):
return g.op("com.microsoft::Inverse", self).setType(self.type())
torch.onnx.register_custom_op_symbolic("::linalg_inv", linalg_inv_settype, 9)
model = CustomInverse()
x = torch.randn(2, 3, 3)
f = io.BytesIO()
torch.onnx.export(
model,
(x,),
f,
opset_version=self.opset_version,
custom_opsets={"com.microsoft": 1},
)
model_proto = onnx.load(io.BytesIO(f.getvalue()))
model_value_info = model_proto.graph.value_info
self.assertIsNotNone(model_value_info)
assert model_value_info
dims = model_value_info[0].type.tensor_type.shape.dim
for i in range(len(dims)):
# If node output has shape info, it should have dim_value
# Otherwise, it has dim_params with dynamic shape
self.assertTrue(dims[i].HasField("dim_value"))
for dim, rank in zip(dims, x.size()):
self.assertEqual(dim.dim_value, rank)
def test_no_setType_for_single_custom_op(self):
self.addCleanup(torch.onnx.unregister_custom_op_symbolic, "::linalg_inv", 9)
class CustomInverse(torch.nn.Module):
def forward(self, x):
return torch.inverse(x) + x
def linalg_inv_no_settype(g, self):
return g.op("com.microsoft::Inverse", self)
torch.onnx.register_custom_op_symbolic("::linalg_inv", linalg_inv_no_settype, 9)
model = CustomInverse()
x = torch.randn(2, 3, 3)
f = io.BytesIO()
torch.onnx.export(
model,
(x,),
f,
opset_version=self.opset_version,
custom_opsets={"com.microsoft": 1},
)
model_proto = onnx.load(io.BytesIO(f.getvalue()))
model_value_info = model_proto.graph.value_info
self.assertIsNotNone(model_value_info)
assert model_value_info
dims = model_value_info[0].type.tensor_type.shape.dim
for i in range(len(dims)):
# If node output has shape info, it should have dim_value
# Otherwise, it has dim_params with dynamic shape
self.assertTrue(dims[i].HasField("dim_param"))
def test_setType_maintains_output_shape_for_single_custom_op_with_dynamic_axes(
self,
):
self.addCleanup(torch.onnx.unregister_custom_op_symbolic, "::linalg_inv", 9)
class CustomInverse(torch.nn.Module):
def forward(self, x):
return torch.inverse(x) + x
def linalg_inv_settype(g, self):
return g.op("com.microsoft::Inverse", self).setType(
self.type().with_dtype(torch.float).with_sizes([None, 3, 3])
)
torch.onnx.register_custom_op_symbolic("::linalg_inv", linalg_inv_settype, 9)
model = CustomInverse()
x = torch.randn(2, 3, 3)
f = io.BytesIO()
torch.onnx.export(
model,
(x,),
f,
opset_version=self.opset_version,
custom_opsets={"com.microsoft": 1},
input_names=["x"],
dynamic_axes={"x": {0: "batch"}},
)
model_proto = onnx.load(io.BytesIO(f.getvalue()))
model_value_info = model_proto.graph.value_info
self.assertIsNotNone(model_value_info)
assert model_value_info
dims = model_value_info[0].type.tensor_type.shape.dim
# The first axe should be dynamic as we defined when exporting
self.assertTrue(dims[0].HasField("dim_param"))
for i in range(1, len(dims)):
# If node output has shape info, it should have dim_value
# Otherwise, it has dim_params with dynamic shape
self.assertTrue(dims[i].HasField("dim_value"))
self.assertEqual(dims[i].dim_value, x.size()[i])
def test_setType_maintains_output_shape_for_single_custom_op_with_onnx_ops(self):
self.addCleanup(torch.onnx.unregister_custom_op_symbolic, "::linalg_inv", 9)
class CustomInverse(torch.nn.Module):
def forward(self, x, y, z):
x = torch.inverse(x)
return x + y + z
def linalg_inv_settype(g, self):
return g.op("com.microsoft::Inverse", self).setType(
self.type().with_dtype(torch.float).with_sizes([2, 3, 10, 10])
)
torch.onnx.register_custom_op_symbolic("::linalg_inv", linalg_inv_settype, 9)
model = CustomInverse()
x = torch.randn(2, 3, 10, 10)
y = torch.randn(2, 3, 10, 10)
z = torch.randn(2, 3, 10, 10)
f = io.BytesIO()
torch.onnx.export(
model,
(x, y, z),
f,
opset_version=self.opset_version,
custom_opsets={"com.microsoft": 1},
)
model_proto = onnx.load(io.BytesIO(f.getvalue()))
# To validate the shape of inverse Op, we need to find inverse output name,
# and then use it to identify its value_info for the shape.
output_name = ""
for node in model_proto.graph.node:
if node.op_type == "Inverse":
output_name = node.output[0]
break
assert output_name
model_value_info = model_proto.graph.value_info
self.assertIsNotNone(model_value_info)
assert model_value_info
for value_info in model_value_info:
assert value_info.name
if value_info.name == output_name:
dims = value_info.type.tensor_type.shape.dim
for i in range(len(dims)):
# If node output has shape info, it should have dim_value
# Otherwise, it has dim_params with dynamic shape
self.assertTrue(dims[i].HasField("dim_value"))
for dim, rank in zip(dims, x.size()):
self.assertEqual(dim.dim_value, rank)
if __name__ == "__main__":
common_utils.run_tests()