forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqconv_unpack.cpp
246 lines (216 loc) · 9.43 KB
/
qconv_unpack.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
The dispatch registrations at the end of this file applies to fbgemm, qnnpack, and cudnn backends.
The correct unpack backend function is determined using runtime polymorphism through the packed_weight pointer,
which is of type intrusive_ptr<ConvPackedParamsBase<kSpatialDim>> and points to either a PackedConvWeightsQnnp,
PackedConvWeights (Fbgemm), or PackedConvWeightsCudnn at runtime, which all inherit from ConvPackedParamsBase.
The implementations for the unpack functions can be found in /cpu/qconv_unpack_impl.cpp, for fbgemm&qnnpack
and /cudnn/ConvUnpackImpl.cpp, for cudnn.
*/
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <tuple>
#include <ATen/core/Tensor.h>
#include <ATen/core/List.h>
#include <ATen/core/ivalue.h>
#include <torch/library.h>
#include <ATen/native/quantized/cpu/fbgemm_utils.h>
#include <ATen/native/quantized/cpu/QnnpackUtils.h>
#include <ATen/native/quantized/cpu/OnednnUtils.h>
#include <ATen/native/quantized/cpu/QuantUtils.h>
#include <ATen/native/quantized/PackedParams.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/_empty_affine_quantized.h>
#include <ATen/ops/_empty_per_channel_affine_quantized.h>
#include <ATen/ops/from_blob.h>
#endif
template <int kSpatialDim = 2>
int register_conv_params();
extern template int register_conv_params<2>();
extern template int register_conv_params<3>();
namespace at {
namespace native {
namespace {
/*
* QConvPackWeightInt8 expects its input tensor to be in shape
* [output_channels, kernel_height, kernel_width, input_channels/Groups]
* Therefore, the unpacking of packed weight tensor using QConvUnpackWeightsInt8
* results in a tensor of the same shape.
*/
template <int kSpatialDim = 2>
class QConvUnpackWeightsInt8 final {
public:
static std::tuple<at::Tensor, c10::optional<at::Tensor>> run(
const c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>>& packed_weight) {
auto& ctx = at::globalContext();
#ifdef USE_FBGEMM
if (ctx.qEngine() == at::QEngine::FBGEMM ||
ctx.qEngine() == at::QEngine::X86) {
return packed_weight->unpack();
}
#endif
#ifdef USE_PYTORCH_QNNPACK
if (ctx.qEngine() == at::QEngine::QNNPACK) {
TORCH_CHECK(
kSpatialDim == 2,
"quantized::conv2d_unpack (qnnpack): QNNPACK only supports Conv2d "
"now.");
return packed_weight->unpack();
}
#endif
#if AT_MKLDNN_ENABLED()
if (ctx.qEngine() == at::QEngine::ONEDNN) {
return packed_weight->unpack();
}
#endif
TORCH_CHECK(
false,
"Didn't find engine for operation quantized::conv2d_unpack ",
toString(ctx.qEngine()));
}
};
class QConv1dUnpackWeightsInt8 final {
public:
static std::tuple<at::Tensor, c10::optional<at::Tensor>> run(
const c10::intrusive_ptr<ConvPackedParamsBase<2>>& packed_weight) {
auto& ctx = at::globalContext();
at::Tensor weight;
c10::optional<at::Tensor> bias;
#ifdef USE_FBGEMM
if (ctx.qEngine() == at::QEngine::FBGEMM ||
ctx.qEngine() == at::QEngine::X86) {
std::tie(weight, bias) = packed_weight->unpack();
weight = weight.squeeze_(quant_utils::kConv1dSqueezeDim + 2);
return std::tuple<at::Tensor, c10::optional<at::Tensor>>(weight, bias);
}
#endif
#ifdef USE_PYTORCH_QNNPACK
if (ctx.qEngine() == at::QEngine::QNNPACK) {
std::tie(weight, bias) = packed_weight->unpack();
at::Tensor new_weight = weight.clone();
new_weight = new_weight.squeeze_(quant_utils::kConv1dSqueezeDim + 2);
return std::tuple<at::Tensor, c10::optional<at::Tensor>>(new_weight, bias);
}
#endif
#if AT_MKLDNN_ENABLED()
if (ctx.qEngine() == at::QEngine::ONEDNN) {
std::tie(weight, bias) = packed_weight->unpack();
at::Tensor new_weight = weight.clone();
new_weight.squeeze_(quant_utils::kConv1dSqueezeDim + 2);
return std::tuple<at::Tensor, c10::optional<at::Tensor>>(new_weight, bias);
}
#endif
TORCH_CHECK(
false,
"Didn't find engine for operation quantized::conv1d_unpack ",
toString(ctx.qEngine()));
}
};
template <int kSpatialDim = 2>
class QConvStride final {
public:
static torch::List<int64_t> run(
const c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>>& packed_weight) {
return packed_weight->stride();
}
};
template <int kSpatialDim = 2>
class QConvPadding final {
public:
static torch::List<int64_t> run(
const c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>>& packed_weight) {
return packed_weight->padding();
}
};
template <int kSpatialDim = 2>
class QConvOutputPadding final {
public:
static torch::List<int64_t> run(
const c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>>& packed_weight) {
return packed_weight->output_padding();
}
};
template <int kSpatialDim = 2>
class QConvDilation final {
public:
static torch::List<int64_t> run(
const c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>>& packed_weight) {
return packed_weight->dilation();
}
};
template <int kSpatialDim = 2>
class QConvGroups final {
public:
static int64_t run(
const c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>>& packed_weight) {
return packed_weight->groups();
}
};
template <int kSpatialDim = 2>
class QConvTranspose final {
public:
static int64_t run(
const c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>>& packed_weight) {
return packed_weight->transpose();
}
};
IValue
unpack_quantized_prepacked_sizes_conv2d(const IValue& ivalue) {
auto params = ivalue.toCustomClass<ConvPackedParamsBase<2>>();
at::Tensor weight;
c10::optional<at::Tensor> bias;
std::tie(weight, bias) = params->unpack();
at::OptionalIntArrayRef bias_sizes = c10::nullopt;
if (bias && bias->defined()) {
bias_sizes = bias->sizes();
}
return IValue(std::make_tuple(
weight.sizes(),
bias_sizes,
params->stride(),
params->padding(),
params->dilation(),
params->groups()));
}
TORCH_LIBRARY_IMPL(quantized, CatchAll, m) {
register_conv_params<2>();
register_conv_params<3>();
// conv_unpack is deprecated, please use conv2d_unpack for 2D conv.
m.impl(TORCH_SELECTIVE_NAME("quantized::conv_unpack"), TORCH_FN(QConvUnpackWeightsInt8<2>::run));
// We use conv2d_unpack to be consistent with conv3d_unpack
m.impl(TORCH_SELECTIVE_NAME("quantized::conv1d_unpack"), TORCH_FN(QConv1dUnpackWeightsInt8::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv2d_unpack"), TORCH_FN(QConvUnpackWeightsInt8<2>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv2d_unpack_sizes"), TORCH_FN(unpack_quantized_prepacked_sizes_conv2d));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv3d_unpack"), TORCH_FN(QConvUnpackWeightsInt8<3>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv2d_stride"), TORCH_FN(QConvStride<2>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv2d_padding"), TORCH_FN(QConvPadding<2>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv2d_output_padding"), TORCH_FN(QConvOutputPadding<2>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv2d_dilation"), TORCH_FN(QConvDilation<2>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv2d_groups"), TORCH_FN(QConvGroups<2>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv2d_transpose"), TORCH_FN(QConvTranspose<2>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv3d_stride"), TORCH_FN(QConvStride<3>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv3d_padding"), TORCH_FN(QConvPadding<3>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv3d_output_padding"), TORCH_FN(QConvOutputPadding<3>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv3d_dilation"), TORCH_FN(QConvDilation<3>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv3d_groups"), TORCH_FN(QConvGroups<3>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv3d_transpose"), TORCH_FN(QConvTranspose<3>::run));
// ConvTranspose is the same, however, we want to have different name.
m.impl(TORCH_SELECTIVE_NAME("quantized::conv_transpose1d_unpack"), TORCH_FN(QConv1dUnpackWeightsInt8::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv_transpose2d_unpack"), TORCH_FN(QConvUnpackWeightsInt8<2>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv_transpose3d_unpack"), TORCH_FN(QConvUnpackWeightsInt8<3>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv_transpose2d_stride"), TORCH_FN(QConvStride<2>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv_transpose2d_padding"), TORCH_FN(QConvPadding<2>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv_transpose2d_output_padding"), TORCH_FN(QConvOutputPadding<2>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv_transpose2d_dilation"), TORCH_FN(QConvDilation<2>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv_transpose2d_groups"), TORCH_FN(QConvGroups<2>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv_transpose2d_transpose"), TORCH_FN(QConvTranspose<2>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv_transpose3d_stride"), TORCH_FN(QConvStride<3>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv_transpose3d_padding"), TORCH_FN(QConvPadding<3>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv_transpose3d_output_padding"), TORCH_FN(QConvOutputPadding<3>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv_transpose3d_dilation"), TORCH_FN(QConvDilation<3>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv_transpose3d_groups"), TORCH_FN(QConvGroups<3>::run));
m.impl(TORCH_SELECTIVE_NAME("quantized::conv_transpose3d_transpose"), TORCH_FN(QConvTranspose<3>::run));
}
} // namespace
} // namespace native
} // namespace at