forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUpSampleMoreKernel.cpp
798 lines (718 loc) · 37.5 KB
/
UpSampleMoreKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <vector>
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/native/UpSample.h>
#include <ATen/Parallel.h>
#include <ATen/TensorIterator.h>
#include <c10/util/irange.h>
#include <ATen/cpu/vec/vec.h>
namespace at::native {
namespace {
using scale_t = std::vector<c10::optional<double>>;
template <typename acc_t, typename scalar_t,
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t> || !std::is_same<acc_t, float>::value, int> = 0>
void inline nearest_channels_last_acc(acc_t* gin, scalar_t* gout, int64_t size) {
TORCH_CHECK((std::is_same<acc_t, scalar_t>::value),
"acc data type of Upsample backward should be same as scalar_t for float or double on CPU.")
using Vec = Vectorized<acc_t>;
int64_t d = 0;
for (; d < size - (size % Vec::size()); d += Vec::size()) {
Vec gin_vec = Vec::loadu(gin + d) + Vec::loadu(gout + d);
gin_vec.store(gin + d);
}
for (; d < size; d++) {
gin[d] += gout[d];
}
}
template <typename acc_t, typename scalar_t,
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t> && std::is_same<acc_t, float>::value, int> = 0>
void inline nearest_channels_last_acc(acc_t* gin, scalar_t* gout, int64_t size) {
using bVec = Vectorized<scalar_t>;
using fVec = Vectorized<float>;
int64_t d = 0;
for (; d < size - (size % bVec::size()); d += bVec::size()) {
bVec gout_bvec = bVec::loadu(gout + d);
auto [gout_fvec0, gout_fvec1] = convert_to_float<scalar_t>(gout_bvec);
fVec gin_fvec0 = fVec::loadu(gin + d) + gout_fvec0;
fVec gin_fvec1 = fVec::loadu(gin + d + fVec::size()) + gout_fvec1;
gin_fvec0.store(gin + d);
gin_fvec1.store(gin + d + fVec::size());
}
for (; d < size; d++) {
gin[d] += gout[d];
}
}
template <typename acc_t, typename scalar_t,
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t> || !std::is_same<acc_t, float>::value, int> = 0>
void inline linear_channels_last_acc(acc_t* gin, scalar_t* gout, acc_t w, int64_t size) {
TORCH_CHECK((std::is_same<acc_t, scalar_t>::value),
"acc data type of Upsample backward should be same as scalar_t for float or double on CPU.")
using Vec = Vectorized<acc_t>;
int64_t d = 0;
for (; d < size - (size % Vec::size()); d += Vec::size()) {
Vec gin_vec = Vec::loadu(gin + d) + Vec(w) * Vec::loadu(gout + d);
gin_vec.store(gin + d);
}
for (; d < size; d++) {
gin[d] += w * gout[d];
}
}
template <typename acc_t, typename scalar_t,
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t> && std::is_same<acc_t, float>::value, int> = 0>
void inline linear_channels_last_acc(acc_t* gin, scalar_t* gout, acc_t w, int64_t size) {
using bVec = Vectorized<scalar_t>;
using fVec = Vectorized<float>;
int64_t d = 0;
for (; d < size - (size % bVec::size()); d += bVec::size()) {
bVec gout_bvec = bVec::loadu(gout + d);
auto [gout_fvec0, gout_fvec1] = convert_to_float<scalar_t>(gout_bvec);
fVec gin_fvec0 = fVec::loadu(gin + d) + fVec(w) * gout_fvec0;
fVec gin_fvec1 = fVec::loadu(gin + d + fVec::size()) + fVec(w) * gout_fvec1;
gin_fvec0.store(gin + d);
gin_fvec1.store(gin + d + fVec::size());
}
for (; d < size; d++) {
gin[d] += w * gout[d];
}
}
template <typename scalar_t, typename scale_type, nearest_idx_fn_t nearest_idx_fn>
void cpu_upsample_nearest_backward(
const Tensor& grad_input_,
const Tensor& grad_output_,
const scale_type& scales) {
TORCH_CHECK(grad_input_.dtype() == grad_output_.dtype(), "expected dtype ", grad_output_.dtype(),
" for `grad_input` but got dtype ", grad_input_.dtype());
auto grad_output = grad_output_.contiguous();
auto grad_input = grad_input_.contiguous();
auto grad_output_data = grad_output.data_ptr<scalar_t>();
auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
auto input_sizes = grad_input.sizes().vec();
auto output_sizes = grad_output.sizes().vec();
auto ndim = input_sizes.size();
// treat nbatch and channels as one dimension
int64_t channels = input_sizes[0] * input_sizes[1];
int64_t input_depth = (ndim == 5) ? input_sizes[2] : 1;
int64_t output_depth = (ndim == 5) ? output_sizes[2] : 1;
int64_t input_height = (ndim >= 4) ? input_sizes[ndim - 2] : 1;
int64_t output_height = (ndim >= 4) ? output_sizes[ndim - 2] : 1;
int64_t input_width = input_sizes[ndim - 1];
int64_t output_width = output_sizes[ndim - 1];
int64_t output_slice_size = output_depth * output_height * output_width;
int64_t input_slice_size = input_depth * input_height * input_width;
using opmath_t = at::opmath_type<scalar_t>;
auto loop1d = [&](int64_t begin, int64_t end) {
opmath_t* acc_data_ptr = nullptr;
std::unique_ptr<opmath_t[]> buffer_data;
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
buffer_data = std::make_unique<opmath_t[]>(input_slice_size);
acc_data_ptr = buffer_data.get();
memset(acc_data_ptr, 0, sizeof(opmath_t) * input_slice_size);
} else {
acc_data_ptr = reinterpret_cast<opmath_t*>(grad_input_data);
}
for (const auto c : c10::irange(begin, end)) {
int64_t input_offset = buffer_data.get() == nullptr ? c * input_slice_size : 0;
for (const auto ow : c10::irange(output_width)) {
int64_t iw = nearest_idx_fn(ow, input_width, output_width, scales[0]);
int64_t output_offset = c * output_slice_size + ow;
acc_data_ptr[input_offset + iw] += grad_output_data[output_offset];
}
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
auto gin = grad_input_data + c * input_slice_size;
apply_grad_input(acc_data_ptr, gin, input_slice_size);
}
}
};
auto loop2d = [&](int64_t begin, int64_t end) {
opmath_t* acc_data_ptr = nullptr;
std::unique_ptr<opmath_t[]> buffer_data;
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
buffer_data = std::make_unique<opmath_t[]>(input_slice_size);
acc_data_ptr = buffer_data.get();
memset(acc_data_ptr, 0, sizeof(opmath_t) * input_slice_size);
} else {
acc_data_ptr = reinterpret_cast<opmath_t*>(grad_input_data);
}
for (const auto c : c10::irange(begin, end)) {
int64_t input_offset = buffer_data.get() == nullptr ? c * input_slice_size : 0;
for (const auto oh : c10::irange(output_height)) {
int64_t ih = nearest_idx_fn(oh, input_height, output_height, scales[0]);
for (const auto ow : c10::irange(output_width)) {
int64_t iw = nearest_idx_fn(ow, input_width, output_width, scales[1]);
int64_t output_offset = c * output_slice_size + oh * output_width + ow;
acc_data_ptr[input_offset + ih * input_width + iw] += grad_output_data[output_offset];
}
}
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
auto gin = grad_input_data + c * input_slice_size;
apply_grad_input(acc_data_ptr, gin, input_slice_size);
}
}
};
auto loop3d = [&](int64_t begin, int64_t end) {
opmath_t* acc_data_ptr = nullptr;
std::unique_ptr<opmath_t[]> buffer_data;
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
buffer_data = std::make_unique<opmath_t[]>(input_slice_size);
acc_data_ptr = buffer_data.get();
memset(acc_data_ptr, 0, sizeof(opmath_t) * input_slice_size);
} else {
acc_data_ptr = reinterpret_cast<opmath_t*>(grad_input_data);
}
for (const auto c : c10::irange(begin, end)) {
int64_t input_offset = buffer_data.get() == nullptr ? c * input_slice_size : 0;
for (const auto od : c10::irange(output_depth)) {
int64_t id = nearest_idx_fn(od, input_depth, output_depth, scales[0]);
for (const auto oh : c10::irange(output_height)) {
int64_t ih = nearest_idx_fn(oh, input_height, output_height, scales[1]);
for (const auto ow : c10::irange(output_width)) {
int64_t iw = nearest_idx_fn(ow, input_width, output_width, scales[2]);
int64_t output_offset = c * output_slice_size +
od * output_height * output_width + oh * output_width + ow;
acc_data_ptr[input_offset + id * input_height * input_width + ih * input_width + iw] +=
grad_output_data[output_offset];
}
}
}
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
auto gin = grad_input_data + c * input_slice_size;
apply_grad_input(acc_data_ptr, gin, input_slice_size);
}
}
};
if (ndim == 3) {
// upsample nearest 1d
at::parallel_for(0, channels, at::internal::GRAIN_SIZE / output_slice_size, loop1d);
} else if (ndim == 4) {
// upsample nearest 2d
at::parallel_for(0, channels, at::internal::GRAIN_SIZE / output_slice_size , loop2d);
} else {
// upsample nearest 3d
TORCH_INTERNAL_ASSERT(ndim == 5);
at::parallel_for(0, channels, at::internal::GRAIN_SIZE / output_slice_size, loop3d);
}
if (!grad_input_.is_contiguous()) {
grad_input_.copy_(grad_input);
}
}
template <typename scalar_t, typename scale_type, nearest_idx_fn_t nearest_idx_fn>
void cpu_upsample_nearest_backward_channels_last(
const Tensor& grad_input_,
const Tensor& grad_output_,
const scale_type& scales) {
TORCH_CHECK(grad_input_.dtype() == grad_output_.dtype(), "expected dtype ", grad_output_.dtype(),
" for `grad_input` but got dtype ", grad_input_.dtype());
auto ndim = grad_output_.ndimension();
TORCH_CHECK(ndim >=4 && ndim <= 5, "Upsample with NHWC format supports tensors with 4 or 5 dims.")
auto channels_last_memory_format = ndim == 4 ? at::MemoryFormat::ChannelsLast : at::MemoryFormat::ChannelsLast3d;
auto grad_output = grad_output_.contiguous(channels_last_memory_format);
auto grad_input = grad_input_.contiguous(channels_last_memory_format);
auto grad_output_data = grad_output.data_ptr<scalar_t>();
auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
auto input_sizes = grad_input.sizes().vec();
auto output_sizes = grad_output.sizes().vec();
int64_t num_batches = input_sizes[0];
int64_t channels = input_sizes[1];
int64_t input_depth = (ndim == 5) ? input_sizes[2] : 1;
int64_t output_depth = (ndim == 5) ? output_sizes[2] : 1;
int64_t input_height = (ndim >= 4) ? input_sizes[ndim - 2] : 1;
int64_t output_height = (ndim >= 4) ? output_sizes[ndim - 2] : 1;
int64_t input_width = input_sizes[ndim - 1];
int64_t output_width = output_sizes[ndim - 1];
int64_t input_slice_size = input_depth * input_height * input_width * channels;
using opmath_t = at::opmath_type<scalar_t>;
auto loop2d = [&](int64_t begin, int64_t end) {
opmath_t* acc_data_ptr = nullptr;
std::unique_ptr<opmath_t[]> buffer_data;
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
buffer_data = std::make_unique<opmath_t[]>(input_slice_size);
acc_data_ptr = buffer_data.get();
memset(acc_data_ptr, 0, sizeof(opmath_t) * input_slice_size);
} else {
acc_data_ptr = reinterpret_cast<opmath_t*>(grad_input_data);
}
for (const auto n : c10::irange(begin, end)) {
int64_t input_offset = buffer_data.get() == nullptr ? n * input_slice_size : 0;
for (const auto oh : c10::irange(output_height)) {
int64_t ih = nearest_idx_fn(oh, input_height, output_height, scales[0]);
for (const auto ow : c10::irange(output_width)) {
int64_t iw = nearest_idx_fn(ow, input_width, output_width, scales[1]);
scalar_t* grad_output_ptr = grad_output_data +
(n * output_height * output_width + oh * output_width + ow) * channels;
opmath_t* buffer_ptr = acc_data_ptr + input_offset + (ih * input_width + iw) * channels;
nearest_channels_last_acc(buffer_ptr, grad_output_ptr, channels);
}
}
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
auto gin = grad_input_data + n * input_slice_size;
apply_grad_input(acc_data_ptr, gin, input_slice_size);
}
}
};
auto loop3d = [&](int64_t begin, int64_t end) {
opmath_t* acc_data_ptr = nullptr;
std::unique_ptr<opmath_t[]> buffer_data;
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
buffer_data = std::make_unique<opmath_t[]>(input_slice_size);
acc_data_ptr = buffer_data.get();
memset(acc_data_ptr, 0, sizeof(opmath_t) * input_slice_size);
} else {
acc_data_ptr = reinterpret_cast<opmath_t*>(grad_input_data);
}
for (const auto n : c10::irange(begin, end)) {
int64_t input_offset = buffer_data.get() == nullptr ? n * input_slice_size : 0;
for (int64_t od = 0; od < output_depth; od++) {
int64_t id = nearest_idx_fn(od, input_depth, output_depth, scales[0]);
for (int64_t oh = 0; oh < output_height; oh++) {
int64_t ih = nearest_idx_fn(oh, input_height, output_height, scales[1]);
for (int64_t ow = 0; ow < output_width; ow++) {
int64_t iw = nearest_idx_fn(ow, input_width, output_width, scales[2]);
scalar_t* grad_output_ptr = grad_output_data +
(n * output_depth * output_height * output_width +
od * output_height * output_width + oh * output_width + ow) * channels;
opmath_t* buffer_ptr = acc_data_ptr + input_offset + (id * input_height * input_width + ih * input_width + iw) * channels;
nearest_channels_last_acc(buffer_ptr, grad_output_ptr, channels);
}
}
}
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
auto gin = grad_input_data + n * input_slice_size;
apply_grad_input(acc_data_ptr, gin, input_slice_size);
}
}
};
if (ndim == 4) {
// upsample nearest 2d
at::parallel_for(0, num_batches, 0, loop2d);
} else {
// upsample nearest 3d
TORCH_INTERNAL_ASSERT(ndim == 5);
at::parallel_for(0, num_batches, 0, loop3d);
}
if (!grad_input_.is_contiguous(channels_last_memory_format)) {
grad_input_.copy_(grad_input);
}
}
void upsample_nearest1d_backward_kernel_impl(
const Tensor& grad_input,
const Tensor& grad_output,
c10::optional<double> scales_w) {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, grad_output.scalar_type(), "upsample_nearest1d_backward", [&] {
cpu_upsample_nearest_backward<scalar_t, scale_t, nearest_idx>(grad_input, grad_output, {scales_w});
});
}
void _upsample_nearest_exact1d_backward_kernel_impl(
const Tensor& grad_input,
const Tensor& grad_output,
c10::optional<double> scales_w) {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, grad_output.scalar_type(), "_upsample_nearest_exact1d_backward", [&] {
cpu_upsample_nearest_backward<scalar_t, scale_t, nearest_exact_idx>(grad_input, grad_output, {scales_w});
});
}
void upsample_nearest2d_backward_kernel_impl(
const Tensor& grad_input,
const Tensor& grad_output,
c10::optional<double> scales_h,
c10::optional<double> scales_w) {
if (grad_output.is_contiguous(at::MemoryFormat::ChannelsLast)) {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, grad_output.scalar_type(), "upsample_nearest2d_backward_cl", [&] {
cpu_upsample_nearest_backward_channels_last<scalar_t, scale_t, nearest_idx>(grad_input, grad_output, {scales_h, scales_w});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, grad_output.scalar_type(), "upsample_nearest2d_backward", [&] {
cpu_upsample_nearest_backward<scalar_t, scale_t, nearest_idx>(grad_input, grad_output, {scales_h, scales_w});
});
}
}
void _upsample_nearest_exact2d_backward_kernel_impl(
const Tensor& grad_input,
const Tensor& grad_output,
c10::optional<double> scales_h,
c10::optional<double> scales_w) {
if (grad_output.is_contiguous(at::MemoryFormat::ChannelsLast)) {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, grad_output.scalar_type(), "_upsample_nearest_exact2d_backward_cl", [&] {
cpu_upsample_nearest_backward_channels_last<scalar_t, scale_t, nearest_exact_idx>(grad_input, grad_output, {scales_h, scales_w});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, grad_output.scalar_type(), "_upsample_nearest_exact2d_backward", [&] {
cpu_upsample_nearest_backward<scalar_t, scale_t, nearest_exact_idx>(grad_input, grad_output, {scales_h, scales_w});
});
}
}
void upsample_nearest3d_backward_kernel_impl(
const Tensor& grad_input,
const Tensor& grad_output,
c10::optional<double> scales_d,
c10::optional<double> scales_h,
c10::optional<double> scales_w) {
if (grad_output.is_contiguous(at::MemoryFormat::ChannelsLast3d)) {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, grad_output.scalar_type(), "_upsample_nearest3d_backward_cl", [&] {
cpu_upsample_nearest_backward_channels_last<scalar_t, scale_t, nearest_idx>(grad_input, grad_output, {scales_d, scales_h, scales_w});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, grad_output.scalar_type(), "upsample_nearest3d_backward", [&] {
cpu_upsample_nearest_backward<scalar_t, scale_t, nearest_idx>(grad_input, grad_output, {scales_d, scales_h, scales_w});
});
}
}
void _upsample_nearest_exact3d_backward_kernel_impl(
const Tensor& grad_input,
const Tensor& grad_output,
c10::optional<double> scales_d,
c10::optional<double> scales_h,
c10::optional<double> scales_w) {
if (grad_output.is_contiguous(at::MemoryFormat::ChannelsLast3d)) {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, grad_output.scalar_type(), "_upsample_nearest_exact3d_backward_cl", [&] {
cpu_upsample_nearest_backward_channels_last<scalar_t, scale_t, nearest_exact_idx>(grad_input, grad_output, {scales_d, scales_h, scales_w});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, grad_output.scalar_type(), "_upsample_nearest_exact3d_backward", [&] {
cpu_upsample_nearest_backward<scalar_t, scale_t, nearest_exact_idx>(grad_input, grad_output, {scales_d, scales_h, scales_w});
});
}
}
template <typename scalar_t, typename scale_type>
void cpu_upsample_linear_backward(
const Tensor& grad_input_,
const Tensor& grad_output_,
bool align_corners,
const scale_type& scales) {
TORCH_CHECK(grad_input_.dtype() == grad_output_.dtype(), "expected dtype ", grad_output_.dtype(),
" for `grad_input` but got dtype ", grad_input_.dtype());
auto grad_output = grad_output_.contiguous();
auto grad_input = grad_input_.contiguous();
auto grad_output_data = grad_output.data_ptr<scalar_t>();
auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
auto input_sizes = grad_input.sizes().vec();
auto output_sizes = grad_output.sizes().vec();
auto ndim = input_sizes.size();
// treat nbatch and channels as one dimension
int64_t channels = input_sizes[0] * input_sizes[1];
int64_t input_depth = (ndim == 5) ? input_sizes[2] : 1;
int64_t output_depth = (ndim == 5) ? output_sizes[2] : 1;
int64_t input_height = (ndim >= 4) ? input_sizes[ndim - 2] : 1;
int64_t output_height = (ndim >= 4) ? output_sizes[ndim - 2] : 1;
int64_t input_width = input_sizes[ndim - 1];
int64_t output_width = output_sizes[ndim - 1];
int64_t input_slice_size = input_depth * input_height * input_width;
int64_t output_slice_size = output_depth * output_height * output_width;
using opmath_t = at::opmath_type<scalar_t>;
auto loop1d = [&](int64_t begin, int64_t end) {
opmath_t* acc_data_ptr = nullptr;
std::unique_ptr<opmath_t[]> buffer_data;
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
buffer_data = std::make_unique<opmath_t[]>(input_slice_size);
acc_data_ptr = buffer_data.get();
memset(acc_data_ptr, 0, sizeof(opmath_t) * input_slice_size);
} else {
acc_data_ptr = reinterpret_cast<opmath_t*>(grad_input_data);
}
const opmath_t width_scale = area_pixel_compute_scale<opmath_t>(
input_width, output_width, align_corners, scales[0]);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t iw0, iw1;
opmath_t w0lambda, w1lambda;
for (const auto c : c10::irange(begin, end)) {
int64_t input_offset = buffer_data.get() == nullptr ? c * input_slice_size : 0;
for (const auto ow : c10::irange(output_width)) {
compute_source_index_and_lambda(
iw0, iw1, w0lambda, w1lambda, width_scale, ow, input_width, output_width, align_corners);
opmath_t grad_output_value = grad_output_data[c * output_slice_size + ow];
acc_data_ptr[input_offset + iw0] += w0lambda * grad_output_value; /* i0 */
acc_data_ptr[input_offset + iw1] += w1lambda * grad_output_value; /* i1*/
}
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
auto gin = grad_input_data + c * input_slice_size;
apply_grad_input(acc_data_ptr, gin, input_slice_size);
}
}
};
auto loop2d = [&](int64_t begin, int64_t end) {
opmath_t* acc_data_ptr = nullptr;
std::unique_ptr<opmath_t[]> buffer_data;
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
buffer_data = std::make_unique<opmath_t[]>(input_slice_size);
acc_data_ptr = buffer_data.get();
memset(acc_data_ptr, 0, sizeof(opmath_t) * input_slice_size);
} else {
acc_data_ptr = reinterpret_cast<opmath_t*>(grad_input_data);
}
const opmath_t height_scale = area_pixel_compute_scale<opmath_t>(
input_height, output_height, align_corners, scales[0]);
const opmath_t width_scale = area_pixel_compute_scale<opmath_t>(
input_width, output_width, align_corners, scales[1]);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t ih0, ih1, iw0, iw1;
opmath_t h0lambda, h1lambda, w0lambda, w1lambda;
for (const auto c : c10::irange(begin, end)) {
int64_t input_offset = buffer_data.get() == nullptr ? c * input_slice_size : 0;
for (const auto oh : c10::irange(output_height)) {
compute_source_index_and_lambda(
ih0, ih1, h0lambda, h1lambda, height_scale, oh, input_height, output_height, align_corners);
for (const auto ow : c10::irange(output_width)) {
compute_source_index_and_lambda(
iw0, iw1, w0lambda, w1lambda, width_scale, ow, input_width, output_width, align_corners);
opmath_t grad_output_value = grad_output_data[c * output_slice_size + oh * output_width + ow];
acc_data_ptr[input_offset + ih0 * input_width + iw0] += h0lambda * w0lambda * grad_output_value; /* i00 */
acc_data_ptr[input_offset + ih0 * input_width + iw1] += h0lambda * w1lambda * grad_output_value; /* i01 */
acc_data_ptr[input_offset + ih1 * input_width + iw0] += h1lambda * w0lambda * grad_output_value; /* i10 */
acc_data_ptr[input_offset + ih1 * input_width + iw1] += h1lambda * w1lambda * grad_output_value; /* i11 */
}
}
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
auto gin = grad_input_data + c * input_slice_size;
apply_grad_input(acc_data_ptr, gin, input_slice_size);
}
}
};
auto loop3d = [&](int64_t begin, int64_t end) {
opmath_t* acc_data_ptr = nullptr;
std::unique_ptr<opmath_t[]> buffer_data;
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
buffer_data = std::make_unique<opmath_t[]>(input_slice_size);
acc_data_ptr = buffer_data.get();
memset(acc_data_ptr, 0, sizeof(opmath_t) * input_slice_size);
} else {
acc_data_ptr = reinterpret_cast<opmath_t*>(grad_input_data);
}
const opmath_t depth_scale = area_pixel_compute_scale<opmath_t>(
input_depth, output_depth, align_corners, scales[0]);
const opmath_t height_scale = area_pixel_compute_scale<opmath_t>(
input_height, output_height, align_corners, scales[1]);
const opmath_t width_scale = area_pixel_compute_scale<opmath_t>(
input_width, output_width, align_corners, scales[2]);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t id0, id1, ih0, ih1, iw0, iw1;
opmath_t d0lambda, d1lambda, h0lambda, h1lambda, w0lambda, w1lambda;
for (const auto c : c10::irange(begin, end)) {
int64_t input_offset = buffer_data.get() == nullptr ? c * input_slice_size : 0;
for (const auto od : c10::irange(output_depth)) {
compute_source_index_and_lambda(
id0, id1, d0lambda, d1lambda, depth_scale, od, input_depth, output_depth, align_corners);
for (const auto oh : c10::irange(output_height)) {
compute_source_index_and_lambda(
ih0, ih1, h0lambda, h1lambda, height_scale, oh, input_height, output_height, align_corners);
for (const auto ow : c10::irange(output_width)) {
compute_source_index_and_lambda(
iw0, iw1, w0lambda, w1lambda, width_scale, ow, input_width, output_width, align_corners);
opmath_t grad_output_value = grad_output_data[c * output_slice_size +
od * output_height * output_width + oh * output_width + ow];
acc_data_ptr[input_offset + id0 * input_height * input_width + ih0 * input_width + iw0] += d0lambda * h0lambda * w0lambda * grad_output_value; /* i000 */
acc_data_ptr[input_offset + id0 * input_height * input_width + ih0 * input_width + iw1] += d0lambda * h0lambda * w1lambda * grad_output_value; /* i001 */
acc_data_ptr[input_offset + id0 * input_height * input_width + ih1 * input_width + iw0] += d0lambda * h1lambda * w0lambda * grad_output_value; /* i010 */
acc_data_ptr[input_offset + id0 * input_height * input_width + ih1 * input_width + iw1] += d0lambda * h1lambda * w1lambda * grad_output_value; /* i011 */
acc_data_ptr[input_offset + id1 * input_height * input_width + ih0 * input_width + iw0] += d1lambda * h0lambda * w0lambda * grad_output_value; /* i100 */
acc_data_ptr[input_offset + id1 * input_height * input_width + ih0 * input_width + iw1] += d1lambda * h0lambda * w1lambda * grad_output_value; /* i101 */
acc_data_ptr[input_offset + id1 * input_height * input_width + ih1 * input_width + iw0] += d1lambda * h1lambda * w0lambda * grad_output_value; /* i110 */
acc_data_ptr[input_offset + id1 * input_height * input_width + ih1 * input_width + iw1] += d1lambda * h1lambda * w1lambda * grad_output_value; /* i111 */
}
}
}
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
auto gin = grad_input_data + c * input_slice_size;
apply_grad_input(acc_data_ptr, gin, input_slice_size);
}
}
};
if (ndim == 3) {
// upsample linear 1d
at::parallel_for(0, channels, at::internal::GRAIN_SIZE / output_slice_size / 2, loop1d);
} else if (ndim == 4) {
// upsample bilinear 2d
at::parallel_for(0, channels, at::internal::GRAIN_SIZE / output_slice_size / 4, loop2d);
} else {
// upsample trilinear 3d
TORCH_INTERNAL_ASSERT(ndim == 5);
at::parallel_for(0, channels, at::internal::GRAIN_SIZE / output_slice_size / 8, loop3d);
}
if (!grad_input_.is_contiguous()) {
grad_input_.copy_(grad_input);
}
}
template <typename scalar_t, typename scale_type>
void cpu_upsample_linear_backward_channels_last(
const Tensor& grad_input_,
const Tensor& grad_output_,
bool align_corners,
const scale_type& scales) {
TORCH_CHECK(grad_input_.dtype() == grad_output_.dtype(), "expected dtype ", grad_output_.dtype(),
" for `grad_input` but got dtype ", grad_input_.dtype());
auto ndim = grad_output_.ndimension();
TORCH_CHECK(ndim >=4 && ndim <= 5, "Upsample with NHWC format supports tensors with 4 or 5 dims.")
auto channels_last_memory_format = ndim == 4 ? at::MemoryFormat::ChannelsLast : at::MemoryFormat::ChannelsLast3d;
auto grad_output = grad_output_.contiguous(channels_last_memory_format);
auto grad_input = grad_input_.contiguous(channels_last_memory_format);
auto grad_output_data = grad_output.data_ptr<scalar_t>();
auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
auto input_sizes = grad_input.sizes().vec();
auto output_sizes = grad_output.sizes().vec();
int64_t num_batches = input_sizes[0];
int64_t channels = input_sizes[1];
int64_t input_depth = (ndim == 5) ? input_sizes[2] : 1;
int64_t output_depth = (ndim == 5) ? output_sizes[2] : 1;
int64_t input_height = (ndim >= 4) ? input_sizes[ndim - 2] : 1;
int64_t output_height = (ndim >= 4) ? output_sizes[ndim - 2] : 1;
int64_t input_width = input_sizes[ndim - 1];
int64_t output_width = output_sizes[ndim - 1];
int64_t input_slice_size = input_depth * input_height * input_width * channels;
using opmath_t = at::opmath_type<scalar_t>;
auto loop2d = [&](int64_t begin, int64_t end) {
opmath_t* acc_data_ptr = nullptr;
std::unique_ptr<opmath_t[]> buffer_data;
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
buffer_data = std::make_unique<opmath_t[]>(input_slice_size);
acc_data_ptr = buffer_data.get();
memset(acc_data_ptr, 0, sizeof(opmath_t) * input_slice_size);
} else {
acc_data_ptr = reinterpret_cast<opmath_t*>(grad_input_data);
}
const opmath_t height_scale = area_pixel_compute_scale<opmath_t>(
input_height, output_height, align_corners, scales[0]);
const opmath_t width_scale = area_pixel_compute_scale<opmath_t>(
input_width, output_width, align_corners, scales[1]);
auto input_indexr = [=](int64_t n, int64_t h, int64_t w, int64_t offset){
return acc_data_ptr + offset + (h * input_width + w) * channels;
};
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t ih0, ih1, iw0, iw1;
opmath_t h0lambda, h1lambda, w0lambda, w1lambda;
for (const auto n : c10::irange(begin, end)) {
int64_t input_offset = buffer_data.get() == nullptr ? n * input_slice_size : 0;
for (const auto oh : c10::irange(output_height)) {
compute_source_index_and_lambda(
ih0, ih1, h0lambda, h1lambda, height_scale, oh, input_height, output_height, align_corners);
for (const auto ow : c10::irange(output_width)) {
compute_source_index_and_lambda(
iw0, iw1, w0lambda, w1lambda, width_scale, ow, input_width, output_width, align_corners);
scalar_t* grad_output_ptr = grad_output_data +
(n * output_height * output_width + oh * output_width + ow) * channels;
linear_channels_last_acc(input_indexr(n, ih0, iw0, input_offset), grad_output_ptr, h0lambda * w0lambda, channels); /* i00 */
linear_channels_last_acc(input_indexr(n, ih0, iw1, input_offset), grad_output_ptr, h0lambda * w1lambda, channels); /* i01 */
linear_channels_last_acc(input_indexr(n, ih1, iw0, input_offset), grad_output_ptr, h1lambda * w0lambda, channels); /* i10 */
linear_channels_last_acc(input_indexr(n, ih1, iw1, input_offset), grad_output_ptr, h1lambda * w1lambda, channels); /* i11 */
}
}
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
auto gin = grad_input_data + n * input_slice_size;
apply_grad_input(acc_data_ptr, gin, input_slice_size);
}
}
};
auto loop3d = [&](int64_t begin, int64_t end) {
opmath_t* acc_data_ptr = nullptr;
std::unique_ptr<opmath_t[]> buffer_data;
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
buffer_data = std::make_unique<opmath_t[]>(input_slice_size);
acc_data_ptr = buffer_data.get();
memset(acc_data_ptr, 0, sizeof(opmath_t) * input_slice_size);
} else {
acc_data_ptr = reinterpret_cast<opmath_t*>(grad_input_data);
}
const opmath_t depth_scale = area_pixel_compute_scale<opmath_t>(
input_depth, output_depth, align_corners, scales[0]);
const opmath_t height_scale = area_pixel_compute_scale<opmath_t>(
input_height, output_height, align_corners, scales[1]);
const opmath_t width_scale = area_pixel_compute_scale<opmath_t>(
input_width, output_width, align_corners, scales[2]);
auto input_indexr = [=](int64_t n, int64_t d, int64_t h, int64_t w, int64_t offset) {
return acc_data_ptr + offset + (d * input_height * input_width + h * input_width + w) * channels;
};
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t id0, id1, ih0, ih1, iw0, iw1;
opmath_t d0lambda, d1lambda, h0lambda, h1lambda, w0lambda, w1lambda;
for (const auto n : c10::irange(begin, end)) {
int64_t input_offset = buffer_data.get() == nullptr ? n * input_slice_size : 0;
for (const auto od : c10::irange(output_depth)) {
compute_source_index_and_lambda(
id0, id1, d0lambda, d1lambda, depth_scale, od, input_depth, output_depth, align_corners);
for (const auto oh : c10::irange(output_height)) {
compute_source_index_and_lambda(
ih0, ih1, h0lambda, h1lambda, height_scale, oh, input_height, output_height, align_corners);
for (const auto ow : c10::irange(output_width)) {
compute_source_index_and_lambda(
iw0, iw1, w0lambda, w1lambda, width_scale, ow, input_width, output_width, align_corners);
scalar_t* grad_output_ptr = grad_output_data + (n * output_depth * output_height * output_width +
od * output_height * output_width + oh * output_width + ow) * channels;
linear_channels_last_acc(input_indexr(n, id0, ih0, iw0, input_offset), grad_output_ptr, d0lambda * h0lambda * w0lambda, channels); /* i000 */
linear_channels_last_acc(input_indexr(n, id0, ih0, iw1, input_offset), grad_output_ptr, d0lambda * h0lambda * w1lambda, channels); /* i001 */
linear_channels_last_acc(input_indexr(n, id0, ih1, iw0, input_offset), grad_output_ptr, d0lambda * h1lambda * w0lambda, channels); /* i010 */
linear_channels_last_acc(input_indexr(n, id0, ih1, iw1, input_offset), grad_output_ptr, d0lambda * h1lambda * w1lambda, channels); /* i011 */
linear_channels_last_acc(input_indexr(n, id1, ih0, iw0, input_offset), grad_output_ptr, d1lambda * h0lambda * w0lambda, channels); /* i100 */
linear_channels_last_acc(input_indexr(n, id1, ih0, iw1, input_offset), grad_output_ptr, d1lambda * h0lambda * w1lambda, channels); /* i101 */
linear_channels_last_acc(input_indexr(n, id1, ih1, iw0, input_offset), grad_output_ptr, d1lambda * h1lambda * w0lambda, channels); /* i110 */
linear_channels_last_acc(input_indexr(n, id1, ih1, iw1, input_offset), grad_output_ptr, d1lambda * h1lambda * w1lambda, channels); /* i111 */
}
}
}
if constexpr (!std::is_same<scalar_t, opmath_t>::value) {
auto gin = grad_input_data + n * input_slice_size;
apply_grad_input(acc_data_ptr, gin, input_slice_size);
}
}
};
if (ndim == 4) {
// upsample bilinear 2d
at::parallel_for(0, num_batches, 0, loop2d);
} else {
// upsample trilinear 3d
TORCH_INTERNAL_ASSERT(ndim == 5);
at::parallel_for(0, num_batches, 0, loop3d);
}
if (!grad_input_.is_contiguous(channels_last_memory_format)) {
grad_input_.copy_(grad_input);
}
}
void upsample_linear1d_backward_kernel_impl(
const Tensor& grad_input,
const Tensor& grad_output,
bool align_corners,
c10::optional<double> scales_w) {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, grad_output.scalar_type(), "upsample_linear1d_backward", [&] {
cpu_upsample_linear_backward<scalar_t, scale_t>(grad_input, grad_output, align_corners, {scales_w});
});
}
void upsample_bilinear2d_backward_kernel_impl(
const Tensor& grad_input,
const Tensor& grad_output,
bool align_corners,
c10::optional<double> scales_h,
c10::optional<double> scales_w) {
if (grad_output.is_contiguous(at::MemoryFormat::ChannelsLast)) {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, grad_output.scalar_type(), "upsample_bilinear2d_backward_channels_last", [&] {
cpu_upsample_linear_backward_channels_last<scalar_t, scale_t>(grad_input, grad_output, align_corners, {scales_h, scales_w});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, grad_output.scalar_type(), "upsample_bilinear2d_backward", [&] {
cpu_upsample_linear_backward<scalar_t, scale_t>(grad_input, grad_output, align_corners, {scales_h, scales_w});
});
}
}
void upsample_trilinear3d_backward_kernel_impl(
const Tensor& grad_input,
const Tensor& grad_output,
bool align_corners,
c10::optional<double> scales_d,
c10::optional<double> scales_h,
c10::optional<double> scales_w) {
if (grad_output.is_contiguous(at::MemoryFormat::ChannelsLast3d)) {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, grad_output.scalar_type(), "upsample_trilinear3d_backward_channels_last", [&] {
cpu_upsample_linear_backward_channels_last<scalar_t, scale_t>(grad_input, grad_output, align_corners, {scales_d, scales_h, scales_w});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, grad_output.scalar_type(), "upsample_trilinear3d_backward", [&] {
cpu_upsample_linear_backward<scalar_t, scale_t>(grad_input, grad_output, align_corners, {scales_d, scales_h, scales_w});
});
}
}
} // anonymous namespace
REGISTER_DISPATCH(upsample_nearest1d_backward_kernel, &upsample_nearest1d_backward_kernel_impl);
REGISTER_DISPATCH(_upsample_nearest_exact1d_backward_kernel, &_upsample_nearest_exact1d_backward_kernel_impl);
REGISTER_DISPATCH(upsample_nearest2d_backward_kernel, &upsample_nearest2d_backward_kernel_impl);
REGISTER_DISPATCH(_upsample_nearest_exact2d_backward_kernel, &_upsample_nearest_exact2d_backward_kernel_impl);
REGISTER_DISPATCH(upsample_nearest3d_backward_kernel, &upsample_nearest3d_backward_kernel_impl);
REGISTER_DISPATCH(_upsample_nearest_exact3d_backward_kernel, &_upsample_nearest_exact3d_backward_kernel_impl);
REGISTER_DISPATCH(upsample_linear1d_backward_kernel, &upsample_linear1d_backward_kernel_impl);
REGISTER_DISPATCH(upsample_bilinear2d_backward_kernel, &upsample_bilinear2d_backward_kernel_impl);
REGISTER_DISPATCH(upsample_trilinear3d_backward_kernel, &upsample_trilinear3d_backward_kernel_impl);
} // namespace at::native