You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
INFO: rkllm-toolkit version: 1.1.4
INFO: vision_config is None, using default vision config
INFO: vision_config is None, using default vision config
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:23<00:00, 5.85s/it]
WARNING: The llm used in MiniCPMV is Qwen2ForCausalLM, we only convert it!
ERROR: Catch exception when loading model: CUDA out of memory. Tried to allocate 260.00 MiB. GPU 0 has a total capacty of 23.59 GiB of which 81.44 MiB is free. Including non-PyTorch memory, this process has 23.49 GiB memory in use. Of the allocated memory 23.09 GiB is allocated by PyTorch, and 150.89 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
我是3090上进行转换的,正常需要多大的显存转换呢
The text was updated successfully, but these errors were encountered:
INFO: rkllm-toolkit version: 1.1.4
INFO: vision_config is None, using default vision config
INFO: vision_config is None, using default vision config
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:23<00:00, 5.85s/it]
WARNING: The llm used in MiniCPMV is Qwen2ForCausalLM, we only convert it!
ERROR: Catch exception when loading model: CUDA out of memory. Tried to allocate 260.00 MiB. GPU 0 has a total capacty of 23.59 GiB of which 81.44 MiB is free. Including non-PyTorch memory, this process has 23.49 GiB memory in use. Of the allocated memory 23.09 GiB is allocated by PyTorch, and 150.89 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
我是3090上进行转换的,正常需要多大的显存转换呢
The text was updated successfully, but these errors were encountered: