-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathlazy_theta_star.m
246 lines (218 loc) · 5.77 KB
/
lazy_theta_star.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
function [path, goal_reached, cost, EXPAND] = lazy_theta_star(map, start, goal)
% @file: lazy_theta_star.m
% @breif: Lazy Theta* motion planning
% @paper: Lazy Theta*: Any-Angle Path Planning and Path Length Analysis in 3D
% @author: Winter
% @update: 2023.8.26
%
% == OPEN and CLOSED ==
% [x, y, g, h, px, py]
% =====================
%
% initialize
OPEN = [];
CLOSED = [];
EXPAND = [];
cost = 0;
goal_reached = false;
motion = [-1, -1, sqrt(2); ...
0, -1, 1; ...
1, -1, sqrt(2); ...
-1, 0, 1; ...
1, 0, 1; ...
-1, 1, sqrt(2); ...
0, 1, 1; ...
1, 1, sqrt(2)];
motion_num = size(motion, 1);
node_s = [start, 0, h(start, goal), start];
OPEN = [OPEN; node_s];
while ~isempty(OPEN)
% pop
f = OPEN(:, 3) + OPEN(:, 4);
[~, index] = min(f);
cur_node = OPEN(index, :);
OPEN(index, :) = [];
% set vertex: path 1
p_index = loc_list(cur_node(5: 6), CLOSED, [1, 2]);
if p_index
node_p = CLOSED(p_index, :);
if line_of_sight(map, node_p, cur_node)
cur_node(3) = inf;
for i = 1:motion_num
node_n_x = cur_node(1) + motion(i, 1);
node_n_y = cur_node(2) + motion(i, 2);
np_index = loc_list([node_n_x, node_n_y], CLOSED, [1, 2]);
if np_index
node_n_p = CLOSED(np_index, :);
if cur_node(3) > node_n_p(3) + dist(node_n_p(1: 2), cur_node(1: 2)')
cur_node(3) = node_n_p(3) + dist(node_n_p(1: 2), cur_node(1: 2)');
cur_node(5) = node_n_x;
cur_node(6) = node_n_y;
end
end
end
end
end
% exists in CLOSED set
if loc_list(cur_node, CLOSED, [1, 2])
continue
end
% update expand zone
if ~loc_list(cur_node, EXPAND, [1, 2])
EXPAND = [EXPAND; cur_node(1:2)];
end
% goal found
if cur_node(1) == goal(1) && cur_node(2) == goal(2)
CLOSED = [cur_node; CLOSED];
goal_reached = true;
cost = cur_node(3);
break
end
if (cur_node(1) ==17) &&(cur_node(2) == 26)
cur_node(1);
end
% explore neighbors
for i = 1:motion_num
% path 1
node_n = [
cur_node(1) + motion(i, 1), ...
cur_node(2) + motion(i, 2), ...
cur_node(3) + motion(i, 3), ...
0, ...
cur_node(1), cur_node(2)];
node_n(4) = h(node_n(1:2), goal);
% exists in CLOSED set
if loc_list(node_n, CLOSED, [1, 2])
continue
end
% obstacle
if map(node_n(1), node_n(2)) == 2
continue
end
p_index = loc_list(cur_node(5: 6), CLOSED, [1, 2]);
if p_index
node_p = CLOSED(p_index, :);
else
node_p = 0;
end
if node_p ~= 0
node_n = update_vertex(node_p, node_n);
end
% update OPEN set
OPEN = [OPEN; node_n];
end
CLOSED = [cur_node; CLOSED];
end
% extract path
path = extract_path(CLOSED, start);
end
%%
function h_val = h(node, goal)
% @breif: heuristic function (Euclidean distance)
h_val = dist(node(1: 2), goal');
end
function index = loc_list(node, list, range)
% @breif: locate the node in given list
num = size(list);
index = 0;
if ~num(1)
return
else
for i = 1:num(1)
if isequal(node(range), list(i, range))
index = i;
return
end
end
end
end
function node_c = update_vertex(node_p, node_c)
% @breif: Update extend node information with current node's parent node.
% path 2
if node_p(3) + dist(node_c(1: 2), node_p(1: 2)') <= node_c(3)
node_c(3) = node_p(3) + dist(node_c(1: 2), node_p(1: 2)');
node_c(5: 6) = node_p(1: 2);
end
end
function flag = line_of_sight(map, node1, node2)
% @breif: Judge collision when moving from node1 to node2 using Bresenham.
if (map(node1(1), node1(2)) == 2) || (map(node2(1), node2(2)) == 2)
flag = true;
return
end
x1 = node1(1); y1 = node1(2);
x2 = node2(1); y2 = node2(2);
d_x = abs(x2 - x1);
d_y = abs(y2 - y1);
if (x2 - x1) == 0
s_x = 0;
else
s_x = (x2 - x1) / d_x;
end
if (y2 - y1) == 0
s_y = 0;
else
s_y = (y2 - y1) / d_y;
end
x = x1; y = y1; e = 0;
% check if any obstacle exists between node1 and node2
if d_x > d_y
tao = (d_y - d_x) / 2;
while x ~= x2
if e > tao
x = x + s_x;
e = e - d_y;
elseif e < tao
y = y + s_y;
e = e + d_x;
else
x = x + s_x;
y = y + s_y;
e = e + d_x - d_y;
end
if map(x, y) == 2
flag = true;
return;
end
end
% swap x and y
else
tao = (d_x - d_y) / 2;
while y ~= y2
if e > tao
y = y + s_y;
e = e - d_x;
elseif e < tao
x = x + s_x;
e = e + d_y;
else
x = x + s_x;
y = y + s_y;
e = e + d_y - d_x;
end
if map(x, y) == 2
flag = true;
return;
end
end
end
flag = false;
end
function path = extract_path(close, start)
% @breif: Extract the path based on the CLOSED set.
path = [];
closeNum = size(close, 1);
index = 1;
while 1
path = [path; close(index, 1:2)];
if isequal(close(index, 1:2), start)
break
end
for i = 1:closeNum
if isequal(close(i, 1:2), close(index, 5:6))
index = i;
break
end
end
end
end