File tree Expand file tree Collapse file tree 2 files changed +61
-0
lines changed Expand file tree Collapse file tree 2 files changed +61
-0
lines changed Original file line number Diff line number Diff line change 1+ # NIXL Benchmark Technical Documentation (Kubernetes)
2+
3+ This guide describes how to run the NIXL benchmark using the provided Docker image on a Kubernetes (K8s) cluster.
4+
5+ ---
6+
7+ ## Prerequisites
8+
9+ - A running Kubernetes cluster with access to NVIDIA GPUs (e.g., using NVIDIA GPU Operator or device plugin)
10+ - ` kubectl ` configured to access your cluster
11+ - deploy dynamo cloud in a namespace
12+
13+ ---
14+
15+ ## 1. Prepare the Kubernetes Deployment
16+
17+ A sample deployment YAML is provided in this repository:
18+ ` benchmarks/nixl/nixl-benchmark-deployment.yaml `
19+
20+ Update the image field in sample yaml to appropiate image in your registry.
21+
22+ You can use the ` yq ` tool to update the image field in the deployment YAML
23+ ``` bash
24+ yq -i ' .spec.template.spec.containers[] |= select(.name == "nixl-benchmark") .image = "your-registry/your-nixl-benchmark:your-tag"' benchmarks/nixl/nixl-benchmark-deployment.yaml > nixl-benchmark-deployment.yaml
25+ ```
26+
27+ ## 2. Deploy using kubectl
28+ Launch using the command below:
29+
30+ ``` bash
31+ kubectl apply -f nixl-benchmark-deployment.yaml
32+ ```
Original file line number Diff line number Diff line change 1+ # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2+ # SPDX-License-Identifier: Apache-2.0
3+ apiVersion : apps/v1
4+ kind : Deployment
5+ metadata :
6+ name : nixl-benchmark
7+ spec :
8+ replicas : 2
9+ selector :
10+ matchLabels :
11+ app : nixl-benchmark
12+ template :
13+ metadata :
14+ labels :
15+ app : nixl-benchmark
16+ spec :
17+ imagePullSecrets :
18+ - name : nvcrimagepullsecret
19+ containers :
20+ - name : nixl-benchmark
21+ image : nvcr.io/nvidian/nim-llm-dev/vllm-runtime:nixlbench-e42c07a8
22+ command : ["sh", "-c"]
23+ args :
24+ - " nixlbench -etcd_endpoints http://dynamo-platform-etcd:2379 --target_seg_type VRAM --initiator_seg_type VRAM && sleep infinity"
25+ resources :
26+ requests :
27+ nvidia.com/gpu : " 1"
28+ limits :
29+ nvidia.com/gpu : " 1"
You can’t perform that action at this time.
0 commit comments