-
Notifications
You must be signed in to change notification settings - Fork 45
/
tiny_dqn.py
223 lines (192 loc) · 8.73 KB
/
tiny_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from __future__ import division, print_function, unicode_literals
# Handle arguments (before slow imports so --help can be fast)
import argparse
parser = argparse.ArgumentParser(
description="Train a DQN net to play MsMacman.")
parser.add_argument("-n", "--number-steps", type=int, default=4000000,
help="total number of training steps")
parser.add_argument("-l", "--learn-iterations", type=int, default=4,
help="number of game iterations between each training step")
parser.add_argument("-s", "--save-steps", type=int, default=1000,
help="number of training steps between saving checkpoints")
parser.add_argument("-c", "--copy-steps", type=int, default=10000,
help="number of training steps between copies of online DQN to target DQN")
parser.add_argument("-r", "--render", action="store_true", default=False,
help="render the game during training or testing")
parser.add_argument("-p", "--path", default="my_dqn.ckpt",
help="path of the checkpoint file")
parser.add_argument("-t", "--test", action="store_true", default=False,
help="test (no learning and minimal epsilon)")
parser.add_argument("-v", "--verbosity", action="count", default=0,
help="increase output verbosity")
args = parser.parse_args()
from collections import deque
import gym
import numpy as np
import os
import tensorflow as tf
env = gym.make("MsPacman-v0")
done = True # env needs to be reset
# First let's build the two DQNs (online & target)
input_height = 88
input_width = 80
input_channels = 1
conv_n_maps = [32, 64, 64]
conv_kernel_sizes = [(8,8), (4,4), (3,3)]
conv_strides = [4, 2, 1]
conv_paddings = ["SAME"] * 3
conv_activation = [tf.nn.relu] * 3
n_hidden_in = 64 * 11 * 10 # conv3 has 64 maps of 11x10 each
n_hidden = 512
hidden_activation = tf.nn.relu
n_outputs = env.action_space.n # 9 discrete actions are available
initializer = tf.contrib.layers.variance_scaling_initializer()
def q_network(X_state, name):
prev_layer = X_state
with tf.variable_scope(name) as scope:
for n_maps, kernel_size, strides, padding, activation in zip(
conv_n_maps, conv_kernel_sizes, conv_strides,
conv_paddings, conv_activation):
prev_layer = tf.layers.conv2d(
prev_layer, filters=n_maps, kernel_size=kernel_size,
strides=strides, padding=padding, activation=activation,
kernel_initializer=initializer)
last_conv_layer_flat = tf.reshape(prev_layer, shape=[-1, n_hidden_in])
hidden = tf.layers.dense(last_conv_layer_flat, n_hidden,
activation=hidden_activation,
kernel_initializer=initializer)
outputs = tf.layers.dense(hidden, n_outputs,
kernel_initializer=initializer)
trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
scope=scope.name)
trainable_vars_by_name = {var.name[len(scope.name):]: var
for var in trainable_vars}
return outputs, trainable_vars_by_name
X_state = tf.placeholder(tf.float32, shape=[None, input_height, input_width,
input_channels])
online_q_values, online_vars = q_network(X_state, name="q_networks/online")
target_q_values, target_vars = q_network(X_state, name="q_networks/target")
# We need an operation to copy the online DQN to the target DQN
copy_ops = [target_var.assign(online_vars[var_name])
for var_name, target_var in target_vars.items()]
copy_online_to_target = tf.group(*copy_ops)
# Now for the training operations
learning_rate = 0.001
momentum = 0.95
with tf.variable_scope("train"):
X_action = tf.placeholder(tf.int32, shape=[None])
y = tf.placeholder(tf.float32, shape=[None, 1])
q_value = tf.reduce_sum(online_q_values * tf.one_hot(X_action, n_outputs),
axis=1, keep_dims=True)
error = tf.abs(y - q_value)
clipped_error = tf.clip_by_value(error, 0.0, 1.0)
linear_error = 2 * (error - clipped_error)
loss = tf.reduce_mean(tf.square(clipped_error) + linear_error)
global_step = tf.Variable(0, trainable=False, name='global_step')
optimizer = tf.train.MomentumOptimizer(
learning_rate, momentum, use_nesterov=True)
training_op = optimizer.minimize(loss, global_step=global_step)
init = tf.global_variables_initializer()
saver = tf.train.Saver()
# Let's implement a simple replay memory
replay_memory_size = 20000
replay_memory = deque([], maxlen=replay_memory_size)
def sample_memories(batch_size):
indices = np.random.permutation(len(replay_memory))[:batch_size]
cols = [[], [], [], [], []] # state, action, reward, next_state, continue
for idx in indices:
memory = replay_memory[idx]
for col, value in zip(cols, memory):
col.append(value)
cols = [np.array(col) for col in cols]
return (cols[0], cols[1], cols[2].reshape(-1, 1), cols[3],
cols[4].reshape(-1, 1))
# And on to the epsilon-greedy policy with decaying epsilon
eps_min = 0.1
eps_max = 1.0 if not args.test else eps_min
eps_decay_steps = args.number_steps // 2
def epsilon_greedy(q_values, step):
epsilon = max(eps_min, eps_max - (eps_max-eps_min) * step/eps_decay_steps)
if np.random.rand() < epsilon:
return np.random.randint(n_outputs) # random action
else:
return np.argmax(q_values) # optimal action
# We need to preprocess the images to speed up training
mspacman_color = np.array([210, 164, 74]).mean()
def preprocess_observation(obs):
img = obs[1:176:2, ::2] # crop and downsize
img = img.mean(axis=2) # to greyscale
img[img==mspacman_color] = 0 # Improve contrast
img = (img - 128) / 128 - 1 # normalize from -1. to 1.
return img.reshape(88, 80, 1)
# TensorFlow - Execution phase
training_start = 10000 # start training after 10,000 game iterations
discount_rate = 0.99
skip_start = 90 # Skip the start of every game (it's just waiting time).
batch_size = 50
iteration = 0 # game iterations
done = True # env needs to be reset
# We will keep track of the max Q-Value over time and compute the mean per game
loss_val = np.infty
game_length = 0
total_max_q = 0
mean_max_q = 0.0
with tf.Session() as sess:
if os.path.isfile(args.path + ".index"):
saver.restore(sess, args.path)
else:
init.run()
copy_online_to_target.run()
while True:
step = global_step.eval()
if step >= args.number_steps:
break
iteration += 1
if args.verbosity > 0:
print("\rIteration {} Training step {}/{} ({:.1f})% "
"Loss {:5f} Mean Max-Q {:5f} ".format(
iteration, step, args.number_steps, step * 100 / args.number_steps,
loss_val, mean_max_q), end="")
if done: # game over, start again
obs = env.reset()
for skip in range(skip_start): # skip the start of each game
obs, reward, done, info = env.step(0)
state = preprocess_observation(obs)
if args.render:
env.render()
# Online DQN evaluates what to do
q_values = online_q_values.eval(feed_dict={X_state: [state]})
action = epsilon_greedy(q_values, step)
# Online DQN plays
obs, reward, done, info = env.step(action)
next_state = preprocess_observation(obs)
# Let's memorize what happened
replay_memory.append((state, action, reward, next_state, 1.0 - done))
state = next_state
if args.test:
continue
# Compute statistics for tracking progress (not shown in the book)
total_max_q += q_values.max()
game_length += 1
if done:
mean_max_q = total_max_q / game_length
total_max_q = 0.0
game_length = 0
if iteration < training_start or iteration % args.learn_iterations != 0:
continue # only train after warmup period and at regular intervals
# Sample memories and use the target DQN to produce the target Q-Value
X_state_val, X_action_val, rewards, X_next_state_val, continues = (
sample_memories(batch_size))
next_q_values = target_q_values.eval(
feed_dict={X_state: X_next_state_val})
max_next_q_values = np.max(next_q_values, axis=1, keepdims=True)
y_val = rewards + continues * discount_rate * max_next_q_values
# Train the online DQN
_, loss_val = sess.run([training_op, loss], feed_dict={
X_state: X_state_val, X_action: X_action_val, y: y_val})
# Regularly copy the online DQN to the target DQN
if step % args.copy_steps == 0:
copy_online_to_target.run()
# And save regularly
if step % args.save_steps == 0:
saver.save(sess, args.path)