-
Notifications
You must be signed in to change notification settings - Fork 141
/
Hopf.agda
704 lines (610 loc) · 30.7 KB
/
Hopf.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
{-# OPTIONS --safe #-}
module Cubical.Homotopy.Hopf where
open import Cubical.Homotopy.HSpace
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Function
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Data.Int hiding (_·_)
open import Cubical.HITs.Pushout.Flattening
open import Cubical.HITs.Pushout
open import Cubical.HITs.Sn
open import Cubical.HITs.Susp
open import Cubical.HITs.S1
open import Cubical.HITs.S2
open import Cubical.HITs.S3
open import Cubical.HITs.PropositionalTruncation
renaming (rec to pRec ; elim to pElim)
open import Cubical.HITs.Join
open import Cubical.HITs.Interval
renaming ( zero to I0 ; one to I1 )
open Iso
open HSpace
open AssocHSpace
private
retEq≡secEq : ∀ {ℓ} {A B : Type ℓ} (e : A ≃ B)
→ (x : _) → secEq e (e .fst x) ≡ cong (e .fst) (retEq e x)
retEq≡secEq {A = A} =
EquivJ (λ B e → (x : _) → secEq e (e .fst x) ≡ cong (e .fst) (retEq e x))
λ _ → refl
module Hopf {ℓ : Level} {A : Pointed ℓ} {e : HSpace A}
(e-ass : AssocHSpace e) (conA : ((x y : typ A) → ∥ x ≡ y ∥₁)) where
isEquiv-μ : (x : typ A) → isEquiv (λ z → (μ e z x))
isEquiv-μ x = pRec (isPropIsEquiv _)
(J (λ x _ → isEquiv (λ z → μ e z x))
(subst isEquiv (funExt (λ z → sym (μᵣ e z)))
(idIsEquiv (typ A))))
(conA (pt A) x)
isEquiv-μ' : (x : typ A) → isEquiv (μ e x)
isEquiv-μ' x =
pRec (isPropIsEquiv _)
(J (λ x _ → isEquiv (μ e x))
(subst isEquiv (funExt (λ x → sym (μₗ e x))) (idIsEquiv (typ A))))
(conA (pt A) x)
μ-eq : (x : typ A) → typ A ≃ typ A
μ-eq x = (λ z → μ e z x) , (isEquiv-μ x)
μ-eq' : (x : typ A) → typ A ≃ typ A
μ-eq' x = μ e x , isEquiv-μ' x
Hopf : Susp (typ A) → Type ℓ
Hopf north = typ A
Hopf south = typ A
Hopf (merid a i₁) = ua (μ-eq a) i₁
TotalSpaceHopfPush : Type _
TotalSpaceHopfPush =
Pushout {A = typ A × typ A} fst λ x → μ e (fst x) (snd x)
TotalSpaceHopfPush→TotalSpace :
TotalSpaceHopfPush → Σ[ x ∈ Susp (typ A) ] Hopf x
TotalSpaceHopfPush→TotalSpace (inl x) = north , x
TotalSpaceHopfPush→TotalSpace (inr x) = south , x
TotalSpaceHopfPush→TotalSpace (push (x , y) i₁) =
merid y i₁ , ua-gluePt (μ-eq y) i₁ x
joinIso₁ : Iso (TotalSpaceHopfPush) (join (typ A) (typ A))
joinIso₁ = theIso
where
F : TotalSpaceHopfPush → join (typ A) (typ A)
F (inl x) = inl x
F (inr x) = inr x
F (push (a , x) i) = push a (μ e a x) i
G : join (typ A) (typ A) → TotalSpaceHopfPush
G (inl x) = inl x
G (inr x) = inr x
G (push a b i) =
(push (a , invEq (μ-eq' a) b) ∙ cong inr (secEq (μ-eq' a) b)) i
s : section F G
s (inl x) = refl
s (inr x) = refl
s (push a b i) j =
hcomp (λ k → λ { (i = i0) → inl a
; (i = i1) → inr (secEq (μ-eq' a) b (j ∨ k))
; (j = i0) → F (compPath-filler
(push (a , invEq (μ-eq' a) b))
(cong inr (secEq (μ-eq' a) b)) k i)
; (j = i1) → push a b i})
(hcomp (λ k → λ { (i = i0) → inl a
; (i = i1) → inr (secEq (μ-eq' a) b (~ k ∨ j))
; (j = i0) → push a (secEq (μ-eq' a) b (~ k)) i
; (j = i1) → push a b i})
(push a b i))
r : retract F G
r (inl x) = refl
r (inr x) = refl
r (push (x , y) i) j =
hcomp (λ k → λ { (i = i0) → inl x
; (i = i1) → inr (μ e x y)
; (j = i0) → (push (x , invEq (μ-eq' x) (μ e x y))
∙ (λ i₁ → inr (retEq≡secEq (μ-eq' x) y (~ k) i₁))) i
; (j = i1) → push (x , y) i})
(hcomp (λ k → λ { (i = i0) → inl x
; (i = i1) → inr (μ e x (retEq (μ-eq' x) y k))
; (j = i1) → push (x , retEq (μ-eq' x) y k) i})
((push (x , invEq (μ-eq' x) (μ e x y))) i))
theIso : Iso TotalSpaceHopfPush (join (typ A) (typ A))
fun theIso = F
inv theIso = G
rightInv theIso = s
leftInv theIso = r
isEquivTotalSpaceHopfPush→TotalSpace :
isEquiv TotalSpaceHopfPush→TotalSpace
isEquivTotalSpaceHopfPush→TotalSpace =
isoToIsEquiv theIso
where
inv' : _ → _
inv' (north , y) = inl y
inv' (south , y) = inr y
inv' (merid a i , y) =
hcomp (λ k → λ { (i = i0) → push (y , a) (~ k)
; (i = i1) → inr y})
(inr (ua-unglue (μ-eq a) i y))
where
pp : PathP (λ i → ua (μ-eq a) i → TotalSpaceHopfPush)
inl inr
pp = ua→ {e = μ-eq a} {B = λ _ → TotalSpaceHopfPush} λ b → push (b , a)
sect : (x : _) → TotalSpaceHopfPush→TotalSpace (inv' x) ≡ x
sect (north , x) = refl
sect (south , x) = refl
sect (merid a i , y) j =
hcomp (λ k → λ { (i = i0) → merid a (~ k ∧ ~ j)
, ua-gluePt (μ-eq a) (~ k ∧ ~ j) y
; (i = i1) → south , y
; (j = i0) →
TotalSpaceHopfPush→TotalSpace
(hfill (λ k → λ { (i = i0) → push (y , a) (~ k)
; (i = i1) → inr y})
(inS (inr (ua-unglue (μ-eq a) i y)))
k)
; (j = i1) → merid a i , y})
((merid a (i ∨ ~ j)) , lem (μ-eq a) i j y)
where
lem : ∀ {ℓ} {A B : Type ℓ} (e : A ≃ B) →
PathP (λ i → PathP (λ j → (y : ua e i) → ua e (i ∨ ~ j))
(λ y → ua-unglue e i y)
λ y → y)
(λ j y → ua-gluePt e (~ j) y)
refl
lem {A = A} {B = B} =
EquivJ (λ B e → PathP (λ i → PathP (λ j → (y : ua e i) → ua e (i ∨ ~ j))
(λ y → ua-unglue e i y)
λ y → y)
(λ j y → ua-gluePt e (~ j) y)
refl)
λ i j a → ua-gluePt (idEquiv B) (i ∨ ~ j) (ua-unglue (idEquiv B) i a)
retr : retract TotalSpaceHopfPush→TotalSpace inv'
retr (inl x) = refl
retr (inr x) = refl
retr (push (x , y) i) j =
hcomp (λ k → λ { (i = i0) → push (x , y) (~ k)
; (i = i1) → inr (μ e x y)
; (j = i1) → push (x , y) (i ∨ ~ k)})
(inr (μ e x y))
theIso : Iso TotalSpaceHopfPush (Σ (Susp (typ A)) Hopf)
fun theIso = TotalSpaceHopfPush→TotalSpace
inv theIso = inv'
rightInv theIso = sect
leftInv theIso = retr
IsoTotalSpaceJoin : Iso (Σ[ x ∈ Susp (typ A) ] Hopf x) (join (typ A) (typ A))
IsoTotalSpaceJoin =
compIso (equivToIso (invEquiv (_ , isEquivTotalSpaceHopfPush→TotalSpace)))
joinIso₁
induced : TotalSpaceHopfPush → Susp (typ A)
induced = fst ∘ TotalSpaceHopfPush→TotalSpace
ua-lem : (x y z : typ A) → (i j : I) → ua (μ-eq y) i
ua-lem x y z i j =
fill (λ k → ua (μ-eq y) i)
(λ j → λ { (i = i0) → μ e z x
; (i = i1) → μ-assoc e-ass z x y j})
(inS (ua-gluePt (μ-eq y) i (μ e z x)))
j
TotalSpaceHopfPush→≃Hopf : (x : TotalSpaceHopfPush) → typ A ≃ Hopf (induced x)
TotalSpaceHopfPush→≃Hopf (inl x) = μ-eq x
TotalSpaceHopfPush→≃Hopf (inr x) = μ-eq x
TotalSpaceHopfPush→≃Hopf (push (x , y) i₁) = pp x y i₁
where
pp : (x y : _) → PathP (λ i → typ A ≃ ua (μ-eq y) i) (μ-eq x) (μ-eq (μ e x y))
pp x y = ΣPathP (P , help)
where
P : PathP (λ z → typ A → ua (μ-eq y) z) (fst (μ-eq x))
(fst (μ-eq (μ e x y)))
P i z = ua-lem x y z i i1
abstract
help : PathP (λ i₂ → isEquiv (P i₂)) (snd (μ-eq x))
(snd (μ-eq (μ e x y)))
help = toPathP (isPropIsEquiv _ _ _)
Push→TotalSpaceHopf : (a : typ A) (x : TotalSpaceHopfPush)
→ Σ[ x ∈ Susp (typ A) ] Hopf x
Push→TotalSpaceHopf a x = (induced x) , fst (TotalSpaceHopfPush→≃Hopf x) a
Push→TotalSpaceHopf-equiv : (a : typ A) → isEquiv (Push→TotalSpaceHopf a)
Push→TotalSpaceHopf-equiv a = pRec (isPropIsEquiv _)
(J (λ a _ → isEquiv (Push→TotalSpaceHopf a))
(subst isEquiv (sym main)
isEquivTotalSpaceHopfPush→TotalSpace))
(conA (pt A) a)
where
lem₁ : (x : _) → fst ((Push→TotalSpaceHopf (pt A)) x)
≡ fst (TotalSpaceHopfPush→TotalSpace x)
lem₁ (inl x) = refl
lem₁ (inr x) = refl
lem₁ (push a i) = refl
lem₂ : (x : _)
→ PathP (λ i → Hopf (lem₁ x i))
(snd ((Push→TotalSpaceHopf (pt A)) x))
(snd (TotalSpaceHopfPush→TotalSpace x))
lem₂ (inl x) = μₗ e x
lem₂ (inr x) = μₗ e x
lem₂ (push (x , y) i) j =
hcomp (λ k → λ {(i = i0) → μₗ e x j
; (i = i1) → μ-assoc-filler e-ass x y j k
; (j = i0) → ua-lem x y (pt A) i k
; (j = i1) → ua-gluePt (μ-eq y) i x})
(ua-gluePt (μ-eq y) i (μₗ e x j))
main : Push→TotalSpaceHopf (pt A) ≡ TotalSpaceHopfPush→TotalSpace
main i x = (lem₁ x i) , (lem₂ x i)
TotalSpaceHopfPush² : Type _
TotalSpaceHopfPush² = Pushout {A = TotalSpaceHopfPush} (λ _ → tt) induced
P : TotalSpaceHopfPush² → Type _
P (inl x) = typ A
P (inr x) = Hopf x
P (push a i) = ua (TotalSpaceHopfPush→≃Hopf a) i
TotalSpacePush² : Type _
TotalSpacePush² = Σ[ x ∈ TotalSpaceHopfPush² ] P x
TotalSpacePush²' : Type _
TotalSpacePush²' =
Pushout {A = typ A × TotalSpaceHopfPush}
{C = Σ[ x ∈ Susp (typ A) ] Hopf x}
fst
λ x → Push→TotalSpaceHopf (fst x) (snd x)
IsoTotalSpacePush²TotalSpacePush²' : Iso TotalSpacePush² TotalSpacePush²'
IsoTotalSpacePush²TotalSpacePush²' =
compIso iso₂ (compIso (equivToIso fl.flatten) iso₁)
where
module fl =
FlatteningLemma (λ _ → tt) induced (λ x → typ A)
Hopf TotalSpaceHopfPush→≃Hopf
iso₁ : Iso (Pushout fl.Σf fl.Σg) TotalSpacePush²'
fun iso₁ (inl x) = inl (snd x)
fun iso₁ (inr x) = inr x
fun iso₁ (push a i) = push ((snd a) , (fst a)) i
inv iso₁ (inl x) = inl (tt , x)
inv iso₁ (inr x) = inr x
inv iso₁ (push a i) = push (snd a , fst a) i
rightInv iso₁ (inl x) = refl
rightInv iso₁ (inr x) = refl
rightInv iso₁ (push a i) = refl
leftInv iso₁ (inl x) = refl
leftInv iso₁ (inr x) = refl
leftInv iso₁ (push a i) = refl
iso₂ : Iso TotalSpacePush² (Σ (Pushout (λ _ → tt) induced) fl.E)
fun iso₂ (inl x , y) = inl x , y
fun iso₂ (inr x , y) = inr x , y
fun iso₂ (push a i , y) = push a i , y
inv iso₂ (inl x , y) = inl x , y
inv iso₂ (inr x , y) = inr x , y
inv iso₂ (push a i , y) = push a i , y
rightInv iso₂ (inl x , snd₁) = refl
rightInv iso₂ (inr x , snd₁) = refl
rightInv iso₂ (push a i , snd₁) = refl
leftInv iso₂ (inl x , snd₁) = refl
leftInv iso₂ (inr x , snd₁) = refl
leftInv iso₂ (push a i , snd₁) = refl
F : TotalSpacePush²'
→ (Pushout {A = typ A × Σ (Susp (typ A)) Hopf} fst snd)
F (inl x) = inl x
F (inr x) = inr x
F (push (x , y) i) = push (x , Push→TotalSpaceHopf x y) i
G : (Pushout {A = typ A × Σ (Susp (typ A)) Hopf} fst snd)
→ TotalSpacePush²'
G (inl x) = inl x
G (inr x) = inr x
G (push (x , y) i) =
hcomp (λ k → λ { (i = i0) → inl x
; (i = i1)
→ inr (secEq (_ , Push→TotalSpaceHopf-equiv x) y k)})
(push (x , invEq (_ , Push→TotalSpaceHopf-equiv x) y) i)
IsoTotalSpacePush²'ΣPush : Iso TotalSpacePush²'
(Pushout {A = typ A × Σ (Susp (typ A)) Hopf} fst snd)
fun IsoTotalSpacePush²'ΣPush = F
inv IsoTotalSpacePush²'ΣPush = G
rightInv IsoTotalSpacePush²'ΣPush (inl x) = refl
rightInv IsoTotalSpacePush²'ΣPush (inr x) = refl
rightInv IsoTotalSpacePush²'ΣPush (push (x , y) i) j =
hcomp (λ k → λ { (i = i0) → inl x
; (i = i1)
→ inr (secEq (_ , Push→TotalSpaceHopf-equiv x) y k)
; (j = i0) → F (
hfill (λ k →
λ { (i = i0) → inl x
; (i = i1)
→ inr (secEq (_
, Push→TotalSpaceHopf-equiv x) y k)})
(inS (push (x
, invEq (_
, Push→TotalSpaceHopf-equiv x) y) i)) k)
; (j = i1)
→ push (x
, (secEq (_
, Push→TotalSpaceHopf-equiv x) y k)) i})
(push (x , (secEq (_ , Push→TotalSpaceHopf-equiv x) y i0)) i)
leftInv IsoTotalSpacePush²'ΣPush (inl x) = refl
leftInv IsoTotalSpacePush²'ΣPush (inr x) = refl
leftInv IsoTotalSpacePush²'ΣPush (push (x , y) i) j =
hcomp (λ k → λ { (i = i0) → inl x
; (i = i1) → inr (secEq (Push→TotalSpaceHopf x
, Push→TotalSpaceHopf-equiv x)
(Push→TotalSpaceHopf x y) (j ∨ k))
; (j = i1) → push (x , y) i})
(hcomp (λ k → λ { (i = i0) → inl x
; (i = i1) → inr (retEq≡secEq
(Push→TotalSpaceHopf x
, Push→TotalSpaceHopf-equiv x)
y (~ k) j)
; (j = i1) → push (x , y) i
; (j = i0) → push (x , invEq
(Push→TotalSpaceHopf x
, Push→TotalSpaceHopf-equiv x)
(Push→TotalSpaceHopf x y)) i})
(push (x , retEq (Push→TotalSpaceHopf x
, Push→TotalSpaceHopf-equiv x) y j) i))
joinIso₂ : Iso TotalSpacePush² (join (typ A) (join (typ A) (typ A)))
joinIso₂ =
compIso IsoTotalSpacePush²TotalSpacePush²'
(compIso IsoTotalSpacePush²'ΣPush
(compIso (equivToIso (joinPushout≃join _ _))
(pathToIso (cong (join (typ A))
(isoToPath IsoTotalSpaceJoin)))))
-- Direct construction of Hopf fibration for S¹
module S¹Hopf where
Border : (x : S¹) → (j : I) → Partial (j ∨ ~ j) (Σ Type₀ (λ T → T ≃ S¹))
Border x j (j = i0) = S¹ , (x ·_) , rotIsEquiv x
Border x j (j = i1) = S¹ , idEquiv S¹
-- Hopf fibration using SuspS¹
HopfSuspS¹ : SuspS¹ → Type₀
HopfSuspS¹ north = S¹
HopfSuspS¹ south = S¹
HopfSuspS¹ (merid x j) = Glue S¹ (Border x j)
-- Hopf fibration using S²
-- TODO : prove that it is equivalent to HopfSuspS¹
HopfS² : S² → Type₀
HopfS² base = S¹
HopfS² (surf i j) = Glue S¹ (λ { (i = i0) → _ , idEquiv S¹
; (i = i1) → _ , idEquiv S¹
; (j = i0) → _ , idEquiv S¹
; (j = i1) → _ , _ , rotIsEquiv (loop i) } )
-- Hopf fibration using more direct definition of the rot equivalence
-- TODO : prove that it is equivalent to HopfSuspS¹
HopfS²' : S² → Type₀
HopfS²' base = S¹
HopfS²' (surf i j) = Glue S¹ (λ { (i = i0) → _ , rotLoopEquiv i0
; (i = i1) → _ , rotLoopEquiv i0
; (j = i0) → _ , rotLoopEquiv i0
; (j = i1) → _ , rotLoopEquiv i } )
-- Total space of the fibration
TotalHopf : Type₀
TotalHopf = Σ SuspS¹ HopfSuspS¹
-- Forward direction
filler-1 : I → (j : I) → (y : S¹) → Glue S¹ (Border y j) → join S¹ S¹
filler-1 i j y x = hfill (λ t → λ { (j = i0) → inl (rotInv-1 x y t)
; (j = i1) → inr x })
(inS (push ((unglue (j ∨ ~ j) x) · invLooper y) (unglue (j ∨ ~ j) x) j)) i
TotalHopf→JoinS¹S¹ : TotalHopf → join S¹ S¹
TotalHopf→JoinS¹S¹ (north , x) = inl x
TotalHopf→JoinS¹S¹ (south , x) = inr x
TotalHopf→JoinS¹S¹ (merid y j , x) = filler-1 i1 j y x
-- Backward direction
JoinS¹S¹→TotalHopf : join S¹ S¹ → TotalHopf
JoinS¹S¹→TotalHopf (inl x) = (north , x)
JoinS¹S¹→TotalHopf (inr x) = (south , x)
JoinS¹S¹→TotalHopf (push y x j) =
(merid (invLooper y · x) j
, glue (λ { (j = i0) → y ; (j = i1) → x }) (rotInv-2 x y j))
-- Now for the homotopies, we will need to fill squares indexed by x y : S¹ with value in S¹
-- Some will be extremeley tough, but happen to be easy when x = y = base
-- therefore, we fill them for x = y = base and then use the connectedness of S¹ × S¹ and
-- the discreteness of ΩS¹ to get general fillers.
-- To proceed with that strategy, we first need a lemma :
-- the sections of the trivial fibration λ (_ : S¹) (_ : S¹) → Int are constant
-- this should be generalized to a constant fibration over a connected space with
-- discrete fiber
fibℤ : S¹ → S¹ → Type₀
fibℤ _ _ = ℤ
S¹→HSet : (A : Type₀) (p : isSet A) (F : S¹ → A) (x : S¹) → F base ≡ F x
S¹→HSet A p F base = refl {x = F base}
S¹→HSet A p F (loop i) = f' i
where
f : PathP (λ i → F base ≡ F (loop i)) refl (cong F loop)
f i = λ j → F (loop (i ∧ j))
L : cong F loop ≡ refl
L = p (F base) (F base) (f i1) refl
f' : PathP (λ i → F base ≡ F (loop i)) (refl {x = F base}) (refl {x = F base})
f' = transport (λ i → PathP (λ j → F base ≡ F (loop j)) refl (L i)) f
constant-loop : (F : S¹ → S¹ → ℤ) → (x y : S¹) → F base base ≡ F x y
constant-loop F x y = L0 ∙ L1
where
p : isSet (S¹ → ℤ)
p = isSetΠ (λ _ → isSetℤ)
L : F base ≡ F x
L = S¹→HSet (S¹ → ℤ) p F x
L0 : F base base ≡ F x base
L0 i = L i base
L1 : F x base ≡ F x y
L1 = S¹→HSet ℤ isSetℤ (F x) y
discretefib : (F : S¹ → S¹ → Type₀) → Type₀
discretefib F = (a : (x y : S¹) → F x y) →
(b : (x y : S¹) → F x y) →
(a base base ≡ b base base) →
(x y : S¹) → a x y ≡ b x y
discretefib-fibℤ : discretefib fibℤ
discretefib-fibℤ a b h x y i =
hcomp (λ t → λ { (i = i0) → constant-loop a x y t
; (i = i1) → constant-loop b x y t })
(h i)
-- first homotopy
assocFiller-3-aux : I → I → I → I → S¹
assocFiller-3-aux x y j i =
hfill (λ t → λ { (i = i0) → rotInv-1 (loop y) (loop (~ y) · loop x) t
; (i = i1) → rotInv-3 (loop y) (loop x) t
; (x = i0) (y = i0) → base
; (x = i0) (y = i1) → base
; (x = i1) (y = i0) → base
; (x = i1) (y = i1) → base })
(inS ((rotInv-2 (loop x) (loop y) i) · (invLooper (loop (~ y) · loop x)))) j
-- assocFiller-3-endpoint is used only in the type of the next function, to specify the
-- second endpoint.
-- However, I only need the first endpoint, but I cannot specify only one of them as is.
-- TODO : use cubical extension types when available to remove assocFiller-3-endpoint
assocFiller-3-endpoint : (x : S¹) → (y : S¹) → y ≡ y
assocFiller-3-endpoint base base i = base
assocFiller-3-endpoint (loop x) base i = assocFiller-3-aux x i0 i1 i
assocFiller-3-endpoint base (loop y) i = assocFiller-3-aux i0 y i1 i
assocFiller-3-endpoint (loop x) (loop y) i = assocFiller-3-aux x y i1 i
assocFiller-3 : (x : S¹) → (y : S¹) →
PathP (λ j → rotInv-1 y (invLooper y · x) j ≡ rotInv-3 y x j)
(λ i → ((rotInv-2 x y i) · (invLooper (invLooper y · x))))
(assocFiller-3-endpoint x y)
assocFiller-3 base base j i = base
assocFiller-3 (loop x) base j i = assocFiller-3-aux x i0 j i
assocFiller-3 base (loop y) j i = assocFiller-3-aux i0 y j i
assocFiller-3 (loop x) (loop y) j i = assocFiller-3-aux x y j i
assoc-3 : (_ y : S¹) → basedΩS¹ y
assoc-3 x y i = assocFiller-3 x y i1 i
fibℤ≡fibAssoc-3 : fibℤ ≡ (λ _ y → basedΩS¹ y)
fibℤ≡fibAssoc-3 i = λ x y → basedΩS¹≡ℤ y (~ i)
discretefib-fibAssoc-3 : discretefib (λ _ y → basedΩS¹ y)
discretefib-fibAssoc-3 =
transp (λ i → discretefib (fibℤ≡fibAssoc-3 i)) i0 discretefib-fibℤ
assocConst-3 : (x y : S¹) → assoc-3 x y ≡ refl
assocConst-3 x y = discretefib-fibAssoc-3 assoc-3 (λ _ _ → refl) refl x y
assocSquare-3 : I → I → S¹ → S¹ → S¹
assocSquare-3 i j x y = hcomp (λ t → λ { (i = i0) → assocFiller-3 x y j i0
; (i = i1) → assocFiller-3 x y j i1
; (j = i0) → assocFiller-3 x y i0 i
; (j = i1) → assocConst-3 x y t i })
(assocFiller-3 x y j i)
filler-3 : I → I → S¹ → S¹ → join S¹ S¹
filler-3 i j y x =
hcomp (λ t → λ { (i = i0) → filler-1 t j (invLooper y · x)
(glue (λ { (j = i0) → y ; (j = i1) → x })
(rotInv-2 x y j))
; (i = i1) → push (rotInv-3 y x t) x j
; (j = i0) → inl (assocSquare-3 i t x y)
; (j = i1) → inr x })
(push ((rotInv-2 x y (i ∨ j)) · (invLooper (invLooper y · x))) (rotInv-2 x y (i ∨ j)) j)
JoinS¹S¹→TotalHopf→JoinS¹S¹ : ∀ x → TotalHopf→JoinS¹S¹ (JoinS¹S¹→TotalHopf x) ≡ x
JoinS¹S¹→TotalHopf→JoinS¹S¹ (inl x) i = inl x
JoinS¹S¹→TotalHopf→JoinS¹S¹ (inr x) i = inr x
JoinS¹S¹→TotalHopf→JoinS¹S¹ (push y x j) i = filler-3 i j y x
-- Second homotopy
-- This HIT is the total space of the Hopf fibration but the ends of SuspS¹ have not been
-- glued together yet — which makes it into a cylinder.
-- This allows to write compositions that do not properly match at the endpoints. However,
-- I suspect it is unnecessary. TODO : do without PseudoHopf
PseudoHopf : Type₀
PseudoHopf = (S¹ × Interval) × S¹
PseudoHopf-π1 : PseudoHopf → S¹
PseudoHopf-π1 ((y , _) , _) = y
PseudoHopf-π2 : PseudoHopf → S¹
PseudoHopf-π2 (_ , x) = x
assocFiller-4-aux : I → I → I → I → S¹
assocFiller-4-aux x y j i =
hfill (λ t → λ { (i = i0) → ((invLooper (loop y · loop x · loop (~ y))) · (loop y · loop x))
· (rotInv-1 (loop x) (loop y) t)
; (i = i1) → (rotInv-4 (loop y) (loop y · loop x) (~ t)) · loop x
; (x = i0) (y = i0) → base
; (x = i0) (y = i1) → base
; (x = i1) (y = i0) → base
; (x = i1) (y = i1) → base })
(inS (rotInv-2 (loop y · loop x) (loop y · loop x · loop (~ y)) i)) j
-- See assocFiller-3-endpoint
-- TODO : use cubical extension types when available to remove assocFiller-4-endpoint
assocFiller-4-endpoint : (x y : S¹) → basedΩS¹ (((invLooper (y · x · invLooper y)) · (y · x)) · x)
assocFiller-4-endpoint base base i = base
assocFiller-4-endpoint (loop x) base i = assocFiller-4-aux x i0 i1 i
assocFiller-4-endpoint base (loop y) i = assocFiller-4-aux i0 y i1 i
assocFiller-4-endpoint (loop x) (loop y) i = assocFiller-4-aux x y i1 i
assocFiller-4 : (x y : S¹) →
PathP (λ j → ((invLooper (y · x · invLooper y)) · (y · x)) · (rotInv-1 x y j) ≡ (rotInv-4 y (y · x) (~ j)) · x)
(λ i → (rotInv-2 (y · x) (y · x · invLooper y) i))
(assocFiller-4-endpoint x y)
assocFiller-4 base base j i = base
assocFiller-4 (loop x) base j i = assocFiller-4-aux x i0 j i
assocFiller-4 base (loop y) j i = assocFiller-4-aux i0 y j i
assocFiller-4 (loop x) (loop y) j i = assocFiller-4-aux x y j i
assoc-4 : (x y : S¹) → basedΩS¹ (((invLooper (y · x · invLooper y)) · (y · x)) · x)
assoc-4 x y i = assocFiller-4 x y i1 i
fibℤ≡fibAssoc-4 : fibℤ ≡ (λ x y → basedΩS¹ (((invLooper (y · x · invLooper y)) · (y · x)) · x))
fibℤ≡fibAssoc-4 i = λ x y → basedΩS¹≡ℤ (((invLooper (y · x · invLooper y)) · (y · x)) · x) (~ i)
discretefib-fibAssoc-4 : discretefib (λ x y → basedΩS¹ (((invLooper (y · x · invLooper y)) · (y · x)) · x))
discretefib-fibAssoc-4 =
transp (λ i → discretefib (fibℤ≡fibAssoc-4 i)) i0 discretefib-fibℤ
assocConst-4 : (x y : S¹) → assoc-4 x y ≡ refl
assocConst-4 x y = discretefib-fibAssoc-4 assoc-4 (λ _ _ → refl) refl x y
assocSquare-4 : I → I → S¹ → S¹ → S¹
assocSquare-4 i j x y =
hcomp (λ t → λ { (i = i0) → assocFiller-4 x y j i0
; (i = i1) → assocFiller-4 x y j i1
; (j = i0) → assocFiller-4 x y i0 i
; (j = i1) → assocConst-4 x y t i })
(assocFiller-4 x y j i)
filler-4-0 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → PseudoHopf
filler-4-0 i j y x =
let x' = unglue (j ∨ ~ j) x in
hfill (λ t → λ { (j = i0) → ((invLooper (y · x · invLooper y) · (y · x) , I0)
, invLooper (y · x · invLooper y) · (y · x) · (rotInv-1 x y t))
; (j = i1) → ((invLooper (x · invLooper y) · x , I1) , x) })
(inS ((invLooper (x' · invLooper y) · x' , seg j) , rotInv-2 x' (x' · invLooper y) j)) i
filler-4-1 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → PseudoHopf
filler-4-1 i j y x =
let x' = unglue (j ∨ ~ j) x in
hfill (λ t → λ { (j = i0) → ((invLooper (y · x · invLooper y) · (y · x) , I0)
, (rotInv-4 y (y · x) (~ t)) · x)
; (j = i1) → ((invLooper (x · invLooper y) · x , I1) , x) })
(inS ((invLooper (x' · invLooper y) · x' , seg j) , unglue (j ∨ ~ j) x)) i
filler-4-2 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → TotalHopf
filler-4-2 i j y x =
let x' = unglue (j ∨ ~ j) x in
hcomp (λ t → λ { (i = i0) → JoinS¹S¹→TotalHopf (filler-1 t j y x)
; (i = i1) → (merid (PseudoHopf-π1 (filler-4-0 t j y x)) j
, glue (λ { (j = i0) → rotInv-1 x y t ; (j = i1) → x })
(PseudoHopf-π2 (filler-4-0 t j y x)))
; (j = i0) → (north , rotInv-1 x y t)
; (j = i1) → (south , x) })
(merid (invLooper (x' · invLooper y) · x') j
, glue (λ { (j = i0) → y · x · invLooper y ; (j = i1) → x }) (rotInv-2 x' (x' · invLooper y) j))
filler-4-3 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → PseudoHopf
filler-4-3 i j y x =
let x' = unglue (j ∨ ~ j) x in
hcomp (λ t → λ { (i = i0) → filler-4-0 t j y x
; (i = i1) → filler-4-1 t j y x
; (j = i0) → ((invLooper (y · x · invLooper y) · (y · x) , I0) , assocSquare-4 i t x y)
; (j = i1) → ((invLooper (x · invLooper y) · x , I1) , x) })
((invLooper (x' · invLooper y) · x' , seg j) , rotInv-2 x' (x' · invLooper y) (i ∨ j))
filler-4-4 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → PseudoHopf
filler-4-4 i j y x =
let x' = unglue (j ∨ ~ j) x in
hcomp (λ t → λ { (i = i0) → filler-4-1 t j y x
; (i = i1) → ((y , seg j) , unglue (j ∨ ~ j) x)
; (j = i0) → ((rotInv-4 y (y · x) i , I0)
, (rotInv-4 y (y · x) (i ∨ ~ t)) · x)
; (j = i1) → ((rotInv-4 y x i , I1) , x) })
((rotInv-4 y x' i , seg j) , x')
filler-4-5 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → TotalHopf
filler-4-5 i j y x =
hcomp (λ t → λ { (i = i0) → filler-4-2 (~ t) j y x
; (i = i1) → (merid (PseudoHopf-π1 (filler-4-4 t j y x)) j
, glue (λ { (j = i0) → x ; (j = i1) → x })
(PseudoHopf-π2 (filler-4-4 t j y x)))
; (j = i0) → (north , x)
; (j = i1) → (south , x) })
(merid (PseudoHopf-π1 (filler-4-3 i j y x)) j
, glue (λ { (j = i0) → x ; (j = i1) → x }) (PseudoHopf-π2 (filler-4-3 i j y x)))
TotalHopf→JoinS¹S¹→TotalHopf : ∀ x → JoinS¹S¹→TotalHopf (TotalHopf→JoinS¹S¹ x) ≡ x
TotalHopf→JoinS¹S¹→TotalHopf (north , x) i = (north , x)
TotalHopf→JoinS¹S¹→TotalHopf (south , x) i = (south , x)
TotalHopf→JoinS¹S¹→TotalHopf (merid y j , x) i = filler-4-5 i j y x
JoinS¹S¹≡TotalHopf : join S¹ S¹ ≡ TotalHopf
JoinS¹S¹≡TotalHopf = isoToPath (iso JoinS¹S¹→TotalHopf
TotalHopf→JoinS¹S¹
TotalHopf→JoinS¹S¹→TotalHopf
JoinS¹S¹→TotalHopf→JoinS¹S¹)
S³≡TotalHopf : S³ ≡ TotalHopf
S³≡TotalHopf = S³≡joinS¹S¹ ∙ JoinS¹S¹≡TotalHopf
open Iso
IsoS³TotalHopf : Iso (S₊ 3) TotalHopf
fun IsoS³TotalHopf x = JoinS¹S¹→TotalHopf (S³→joinS¹S¹ (inv IsoS³S3 x))
inv IsoS³TotalHopf x = fun IsoS³S3 (joinS¹S¹→S³ (TotalHopf→JoinS¹S¹ x))
rightInv IsoS³TotalHopf x =
cong (JoinS¹S¹→TotalHopf ∘ S³→joinS¹S¹)
(leftInv IsoS³S3 (joinS¹S¹→S³ (TotalHopf→JoinS¹S¹ x)))
∙∙ cong JoinS¹S¹→TotalHopf
(joinS¹S¹→S³→joinS¹S¹ (TotalHopf→JoinS¹S¹ x))
∙∙ TotalHopf→JoinS¹S¹→TotalHopf x
leftInv IsoS³TotalHopf x =
cong (fun IsoS³S3 ∘ joinS¹S¹→S³)
(JoinS¹S¹→TotalHopf→JoinS¹S¹ (S³→joinS¹S¹ (inv IsoS³S3 x)))
∙∙ cong (fun IsoS³S3) (S³→joinS¹S¹→S³ (inv IsoS³S3 x))
∙∙ Iso.rightInv IsoS³S3 x