-
Notifications
You must be signed in to change notification settings - Fork 141
/
BlakersMassey.agda
809 lines (656 loc) · 37.5 KB
/
BlakersMassey.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
{-
A Cubical proof of Blakers-Massey Theorem (KANG Rongji, Oct. 2021)
Based on the previous type-theoretic proof described in
Kuen-Bang Hou (Favonia), Eric Finster, Dan Licata, Peter LeFanu Lumsdaine,
"A Mechanization of the Blakers–Massey Connectivity Theorem in Homotopy Type Theory"
(https://arxiv.org/abs/1605.03227)
Also the HoTT-Agda formalization by Favonia:
(https://github.com/HoTT/HoTT-Agda/blob/master/theorems/homotopy/BlakersMassey.agda)
Using cubes explicitly as much as possible.
-}
{-# OPTIONS --safe #-}
module Cubical.Homotopy.BlakersMassey where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Transport
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.Isomorphism
open Iso
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Data.Nat hiding (elim)
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.HITs.Truncation renaming (hLevelTrunc to Trunc)
open import Cubical.HITs.Pushout hiding (PushoutGenFib)
open import Cubical.Homotopy.Connected
open import Cubical.Homotopy.WedgeConnectivity
module BlakersMassey {ℓ₁ ℓ₂ ℓ₃ : Level}
(X : Type ℓ₁)(Y : Type ℓ₂)(Q : X → Y → Type ℓ₃)
{m : HLevel} (leftConn : (x : X) → isConnected (1 + m) (Σ[ y ∈ Y ] Q x y))
{n : HLevel} (rightConn : (y : Y) → isConnected (1 + n) (Σ[ x ∈ X ] Q x y))
where
ℓ : Level
ℓ = ℓ-max (ℓ-max ℓ₁ ℓ₂) ℓ₃
leftFiber : X → Type (ℓ-max ℓ₂ ℓ₃)
leftFiber x = Σ[ y ∈ Y ] Q x y
rightFiber : Y → Type (ℓ-max ℓ₁ ℓ₃)
rightFiber y = Σ[ x ∈ X ] Q x y
{- We use the alternative formulation of pushout with fewer parameters -}
PushoutQ = PushoutGen Q
{- Some preliminary definitions for convenience -}
fiberSquare :
{x₀ x₁ : X}{y₀ : Y}{p : PushoutQ}(q₀₀ : Q x₀ y₀)(q₁₀ : Q x₁ y₀)
→ inl x₁ ≡ p → inl x₀ ≡ p → Type ℓ
fiberSquare q₀₀ q₁₀ r' r = PathP (λ i → push q₀₀ (~ i) ≡ r' i) (sym (push q₁₀)) r
fiberSquarePush :
{x₀ x₁ : X}{y₀ y₁ : Y}(q₀₀ : Q x₀ y₀)(q₁₀ : Q x₁ y₀)(q₁₁ : Q x₁ y₁)
→ inl x₀ ≡ inr y₁ → Type ℓ
fiberSquarePush q₀₀ q₁₀ q₁₁ = fiberSquare q₀₀ q₁₀ (push q₁₁)
fiber' : {x₀ : X}{y₀ : Y}(q₀₀ : Q x₀ y₀){x₁ : X}{p : PushoutQ} → inl x₁ ≡ p → inl x₀ ≡ p → Type ℓ
fiber' {y₀ = y₀} q₀₀ {x₁ = x₁} r' r = Σ[ q₁₀ ∈ Q x₁ y₀ ] fiberSquare q₀₀ q₁₀ r' r
fiber'Push : {x₀ x₁ : X}{y₀ y₁ : Y}(q₀₀ : Q x₀ y₀)(q₁₁ : Q x₁ y₁) → inl x₀ ≡ inr y₁ → Type ℓ
fiber'Push q₀₀ q₁₁ = fiber' q₀₀ (push q₁₁)
leftCodeExtended :
{x₀ : X}{y₀ : Y}(q₀₀ : Q x₀ y₀)
→ (x₁ : X){p : PushoutQ} → inl x₁ ≡ p → inl x₀ ≡ p → Type ℓ
leftCodeExtended {y₀ = y₀} q₀₀ x₁ r' r = Trunc (m + n) (fiber' q₀₀ r' r)
rightCode : {x₀ : X}(y : Y) → Path PushoutQ (inl x₀) (inr y) → Type ℓ
rightCode y r = Trunc (m + n) (fiber push r)
{- Bunch of coherence data that will be used to construct Code -}
{- Definitions of fiber→ -}
module _
{x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) where
{- (x₀ , q₀₀) = (x₁ , q₁₀) -}
module _
{y₁ : Y}(q₁₁ : Q x₁ y₁)
(r : inl x₁ ≡ inr y₁)
(p : fiberSquarePush q₁₀ q₁₀ q₁₁ r) where
fiber→[q₀₀=q₁₀]-filler : (i j k : I) → PushoutQ
fiber→[q₀₀=q₁₀]-filler i j k' =
hfill (λ k → λ { (i = i0) → push q₁₁ (j ∧ k)
; (i = i1) → p k j
; (j = i0) → push q₁₀ (i ∧ ~ k)
; (j = i1) → push q₁₁ k })
(inS (push q₁₀ (i ∧ ~ j))) k'
fiber→[q₀₀=q₁₀] : fiber push r
fiber→[q₀₀=q₁₀] .fst = q₁₁
fiber→[q₀₀=q₁₀] .snd i j = fiber→[q₀₀=q₁₀]-filler i j i1
∣fiber→[q₀₀=q₁₀]∣ : rightCode _ r
∣fiber→[q₀₀=q₁₀]∣ = ∣ fiber→[q₀₀=q₁₀] ∣ₕ
{- (y₁ , q₁₁) = (y₀ , q₁₀) -}
module _
{x₀ : X}(q₀₀ : Q x₀ y₀)
(r : inl x₀ ≡ inr y₀)
(p : fiberSquarePush q₀₀ q₁₀ q₁₀ r) where
fiber→[q₁₁=q₁₀]-filler : (i j k : I) → PushoutQ
fiber→[q₁₁=q₁₀]-filler i j k' =
hfill (λ k → λ { (i = i0) → push q₀₀ (j ∨ ~ k)
; (i = i1) → p k j
; (j = i0) → push q₀₀ (~ k)
; (j = i1) → push q₁₀ (~ i ∨ k) })
(inS (push q₁₀ (~ i ∨ ~ j))) k'
fiber→[q₁₁=q₁₀] : fiber push r
fiber→[q₁₁=q₁₀] .fst = q₀₀
fiber→[q₁₁=q₁₀] .snd i j = fiber→[q₁₁=q₁₀]-filler i j i1
∣fiber→[q₁₁=q₁₀]∣ : rightCode _ r
∣fiber→[q₁₁=q₁₀]∣ = ∣ fiber→[q₁₁=q₁₀] ∣ₕ
{- q₀₀ = q₁₁ = q₁₀ -}
fiber→[q₀₀=q₁₀=q₁₁]-filler :
(r : inl x₁ ≡ inr y₀)
→ (p : fiberSquarePush q₁₀ q₁₀ q₁₀ r)
→ (i j k l : I) → PushoutQ
fiber→[q₀₀=q₁₀=q₁₁]-filler r p i j k l' =
hfill (λ l → λ { (i = i0) → fiber→[q₀₀=q₁₀]-filler q₁₀ r p j k l
; (i = i1) → fiber→[q₁₁=q₁₀]-filler q₁₀ r p j k l
; (j = i0) → push q₁₀ ((i ∨ (k ∧ l)) ∧ (k ∨ (i ∧ ~ l)))
; (j = i1) → p l k
; (k = i0) → push q₁₀ ((i ∨ j) ∧ ~ l)
; (k = i1) → push q₁₀ ((i ∧ ~ j) ∨ l) })
(inS (push q₁₀ ((i ∨ (~ k ∧ j)) ∧ (~ k ∨ (i ∧ ~ j))))) l'
fiber→[q₀₀=q₁₀=q₁₁] : fiber→[q₀₀=q₁₀] q₁₀ ≡ fiber→[q₁₁=q₁₀] q₁₀
fiber→[q₀₀=q₁₀=q₁₁] i r p .fst = q₁₀
fiber→[q₀₀=q₁₀=q₁₁] i r p .snd j k = fiber→[q₀₀=q₁₀=q₁₁]-filler r p i j k i1
∣fiber→[q₀₀=q₁₀=q₁₁]∣ : ∣fiber→[q₀₀=q₁₀]∣ q₁₀ ≡ ∣fiber→[q₁₁=q₁₀]∣ q₁₀
∣fiber→[q₀₀=q₁₀=q₁₁]∣ i r p = ∣ fiber→[q₀₀=q₁₀=q₁₁] i r p ∣ₕ
{- Definitions of fiber← -}
module _
{x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) where
{- (x₁ , q₁₁) = (x₀ , q₀₁) -}
module _
{y₀ : Y}(q₀₀ : Q x₀ y₀)
(r : inl x₀ ≡ inr y₁)
(p : push q₀₁ ≡ r) where
fiber←[q₁₁=q₀₁]-filler : (i j k : I) → PushoutQ
fiber←[q₁₁=q₀₁]-filler i j k' =
hfill (λ k → λ { (i = i0) → push q₀₀ (~ j ∧ k)
; (i = i1) → p k j
; (j = i0) → push q₀₀ (~ i ∧ k)
; (j = i1) → push q₀₁ i })
(inS (push q₀₁ (i ∧ j))) k'
fiber←[q₁₁=q₀₁] : fiber'Push q₀₀ q₀₁ r
fiber←[q₁₁=q₀₁] .fst = q₀₀
fiber←[q₁₁=q₀₁] .snd i j = fiber←[q₁₁=q₀₁]-filler i j i1
∣fiber←[q₁₁=q₀₁]∣ : leftCodeExtended q₀₀ _ (push q₀₁) r
∣fiber←[q₁₁=q₀₁]∣ = ∣ fiber←[q₁₁=q₀₁] ∣ₕ
{- (y₀ , q₀₀) = (y₁ , q₀₁) -}
module _
{x₁ : X}(q₁₁ : Q x₁ y₁)
(r : inl x₀ ≡ inr y₁)
(p : push q₀₁ ≡ r) where
fiber←[q₀₀=q₀₁]-filler : (i j k : I) → PushoutQ
fiber←[q₀₀=q₀₁]-filler i j k' =
hfill (λ k → λ { (i = i0) → push q₁₁ (~ j ∨ ~ k)
; (i = i1) → p k j
; (j = i0) → push q₀₁ (~ i)
; (j = i1) → push q₁₁ (i ∨ ~ k) })
(inS (push q₀₁ (~ i ∨ j))) k'
fiber←[q₀₀=q₀₁] : fiber'Push q₀₁ q₁₁ r
fiber←[q₀₀=q₀₁] .fst = q₁₁
fiber←[q₀₀=q₀₁] .snd i j = fiber←[q₀₀=q₀₁]-filler i j i1
∣fiber←[q₀₀=q₀₁]∣ : leftCodeExtended q₀₁ _ (push q₁₁) r
∣fiber←[q₀₀=q₀₁]∣ = ∣ fiber←[q₀₀=q₀₁] ∣ₕ
{- q₀₀ = q₀₁ = q₁₁ -}
fiber←[q₀₀=q₀₁=q₁₁]-filler :
(r : inl x₀ ≡ inr y₁)
→ (p : push q₀₁ ≡ r)
→ (i j k l : I) → PushoutQ
fiber←[q₀₀=q₀₁=q₁₁]-filler r p i j k l' =
hfill (λ l → λ { (i = i0) → fiber←[q₁₁=q₀₁]-filler q₀₁ r p j k l
; (i = i1) → fiber←[q₀₀=q₀₁]-filler q₀₁ r p j k l
; (j = i0) → push q₀₁ ((i ∨ (~ k ∧ l)) ∧ (~ k ∨ (i ∧ ~ l)))
; (j = i1) → p l k
; (k = i0) → push q₀₁ ((i ∨ l) ∧ ~ j)
; (k = i1) → push q₀₁ ((i ∧ ~ l) ∨ j) })
(inS (push q₀₁ ((i ∨ (k ∧ j)) ∧ (k ∨ (i ∧ ~ j))))) l'
fiber←[q₀₀=q₀₁=q₁₁] : fiber←[q₁₁=q₀₁] q₀₁ ≡ fiber←[q₀₀=q₀₁] q₀₁
fiber←[q₀₀=q₀₁=q₁₁] i r p .fst = q₀₁
fiber←[q₀₀=q₀₁=q₁₁] i r p .snd j k = fiber←[q₀₀=q₀₁=q₁₁]-filler r p i j k i1
∣fiber←[q₀₀=q₀₁=q₁₁]∣ : ∣fiber←[q₁₁=q₀₁]∣ q₀₁ ≡ ∣fiber←[q₀₀=q₀₁]∣ q₀₁
∣fiber←[q₀₀=q₀₁=q₁₁]∣ i r p = ∣ fiber←[q₀₀=q₀₁=q₁₁] i r p ∣ₕ
{- Definitions of fiber→← -}
module _
{x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) where
{- (x₀ , q₀₀) = (x₁ , q₁₀) -}
module _
{y₁ : Y}(q₁₁ : Q x₁ y₁)
(r : inl x₁ ≡ inr y₁)
(p : fiberSquarePush q₁₀ q₁₀ q₁₁ r) where
fiber→←[q₀₀=q₁₀]-filler : (i j k l : I) → PushoutQ
fiber→←[q₀₀=q₁₀]-filler i j k l' =
let p' = fiber→[q₀₀=q₁₀] q₁₀ q₁₁ r p .snd in
hfill (λ l → λ { (i = i0) → fiber←[q₁₁=q₀₁]-filler q₁₁ q₁₀ r p' j k l
; (i = i1) → fiber→[q₀₀=q₁₀]-filler q₁₀ q₁₁ r p l k j
; (j = i0) → push q₁₀ (~ k ∧ l)
; (j = i1) → p' l k
; (k = i0) → push q₁₀ (~ j ∧ l)
; (k = i1) → push q₁₁ j })
(inS (push q₁₁ (j ∧ k))) l'
fiber→←[q₀₀=q₁₀] : fiber←[q₁₁=q₀₁] q₁₁ q₁₀ r (fiber→[q₀₀=q₁₀] q₁₀ q₁₁ r p .snd) .snd ≡ p
fiber→←[q₀₀=q₁₀] i j k = fiber→←[q₀₀=q₁₀]-filler i j k i1
{- (y₁ , q₁₁) = (y₀ , q₁₀) -}
module _
{x₀ : X}(q₀₀ : Q x₀ y₀)
(r : inl x₀ ≡ inr y₀)
(p : fiberSquarePush q₀₀ q₁₀ q₁₀ r) where
fiber→←[q₁₁=q₁₀]-filler : (i j k l : I) → PushoutQ
fiber→←[q₁₁=q₁₀]-filler i j k l' =
let p' = fiber→[q₁₁=q₁₀] q₁₀ q₀₀ r p .snd in
hfill (λ l → λ { (i = i0) → fiber←[q₀₀=q₀₁]-filler q₀₀ q₁₀ r p' j k l
; (i = i1) → fiber→[q₁₁=q₁₀]-filler q₁₀ q₀₀ r p l k j
; (j = i0) → push q₁₀ (~ k ∨ ~ l)
; (j = i1) → p' l k
; (k = i0) → push q₀₀ (~ j)
; (k = i1) → push q₁₀ (j ∨ ~ l) })
(inS (push q₀₀ (~ j ∨ k))) l'
fiber→←[q₁₁=q₁₀] : fiber←[q₀₀=q₀₁] q₀₀ q₁₀ r (fiber→[q₁₁=q₁₀] q₁₀ q₀₀ r p .snd) .snd ≡ p
fiber→←[q₁₁=q₁₀] i j k = fiber→←[q₁₁=q₁₀]-filler i j k i1
{- q₀₀ = q₁₀ = q₁₁ -}
fiber→←hypercube :
(r : inl x₁ ≡ inr y₀)
→ (p : fiberSquarePush q₁₀ q₁₀ q₁₀ r)
→ PathP (λ i → fiber←[q₀₀=q₀₁=q₁₁] q₁₀ i r (fiber→[q₀₀=q₁₀=q₁₁] q₁₀ i r p .snd) .snd ≡ p)
(fiber→←[q₀₀=q₁₀] q₁₀ r p) (fiber→←[q₁₁=q₁₀] q₁₀ r p)
fiber→←hypercube r p i j u v =
hcomp (λ l → λ { (i = i0) → fiber→←[q₀₀=q₁₀]-filler q₁₀ r p j u v l
; (i = i1) → fiber→←[q₁₁=q₁₀]-filler q₁₀ r p j u v l
; (j = i0) → fiber←[q₀₀=q₀₁=q₁₁]-filler q₁₀ r (fiber→[q₀₀=q₁₀=q₁₁] q₁₀ i r p .snd) i u v l
; (j = i1) → fiber→[q₀₀=q₁₀=q₁₁]-filler q₁₀ r p i l v u
; (u = i0) → push q₁₀ ((i ∨ (~ v ∧ l)) ∧ (~ v ∨ (i ∧ ~ l)))
; (u = i1) → fiber→[q₀₀=q₁₀=q₁₁] q₁₀ i r p .snd l v
; (v = i0) → push q₁₀ ((i ∨ l) ∧ ~ u)
; (v = i1) → push q₁₀ ((i ∧ ~ l) ∨ u) })
(push q₁₀ ((i ∨ (v ∧ u)) ∧ (v ∨ (i ∧ ~ u))))
{- Definitions of fiber←→ -}
module _
{x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) where
{- (x₁ , q₁₁) = (x₀ , q₀₁) -}
module _
{y₀ : Y}(q₀₀ : Q x₀ y₀)
(r : inl x₀ ≡ inr y₁)
(p : push q₀₁ ≡ r) where
fiber←→[q₁₁=q₀₁]-filler : (i j k l : I) → PushoutQ
fiber←→[q₁₁=q₀₁]-filler i j k l' =
let p' = fiber←[q₁₁=q₀₁] q₀₁ q₀₀ r p .snd in
hfill (λ l → λ { (i = i0) → fiber→[q₀₀=q₁₀]-filler q₀₀ q₀₁ r p' j k l
; (i = i1) → fiber←[q₁₁=q₀₁]-filler q₀₁ q₀₀ r p l k j
; (j = i0) → push q₀₁ (k ∧ l)
; (j = i1) → p' l k
; (k = i0) → push q₀₀ (j ∧ ~ l)
; (k = i1) → push q₀₁ l })
(inS (push q₀₀ (j ∧ ~ k))) l'
fiber←→[q₁₁=q₀₁] : fiber→[q₀₀=q₁₀] q₀₀ q₀₁ r (fiber←[q₁₁=q₀₁] q₀₁ q₀₀ r p .snd) .snd ≡ p
fiber←→[q₁₁=q₀₁] i j k = fiber←→[q₁₁=q₀₁]-filler i j k i1
{- (y₀ , q₀₀) = (y₁ , q₀₁) -}
module _
{x₁ : X}(q₁₁ : Q x₁ y₁)
(r : inl x₀ ≡ inr y₁)
(p : push q₀₁ ≡ r) where
fiber←→[q₀₀=q₀₁]-filler : (i j k l : I) → PushoutQ
fiber←→[q₀₀=q₀₁]-filler i j k l' =
let p' = fiber←[q₀₀=q₀₁] q₀₁ q₁₁ r p .snd in
hfill (λ l → λ { (i = i0) → fiber→[q₁₁=q₁₀]-filler q₁₁ q₀₁ r p' j k l
; (i = i1) → fiber←[q₀₀=q₀₁]-filler q₀₁ q₁₁ r p l k j
; (j = i0) → push q₀₁ (k ∨ ~ l)
; (j = i1) → p' l k
; (k = i0) → push q₀₁ (~ l)
; (k = i1) → push q₁₁ (~ j ∨ l) })
(inS (push q₁₁ (~ j ∨ ~ k))) l'
fiber←→[q₀₀=q₀₁] : fiber→[q₁₁=q₁₀] q₁₁ q₀₁ r (fiber←[q₀₀=q₀₁] q₀₁ q₁₁ r p .snd) .snd ≡ p
fiber←→[q₀₀=q₀₁] i j k = fiber←→[q₀₀=q₀₁]-filler i j k i1
{- q₀₀ = q₀₁ = q₁₁ -}
fiber←→hypercube :
(r : inl x₀ ≡ inr y₁)
→ (p : push q₀₁ ≡ r)
→ PathP (λ i → fiber→[q₀₀=q₁₀=q₁₁] q₀₁ i r (fiber←[q₀₀=q₀₁=q₁₁] q₀₁ i r p .snd) .snd ≡ p)
(fiber←→[q₁₁=q₀₁] q₀₁ r p) (fiber←→[q₀₀=q₀₁] q₀₁ r p)
fiber←→hypercube r p i j u v =
hcomp (λ l → λ { (i = i0) → fiber←→[q₁₁=q₀₁]-filler q₀₁ r p j u v l
; (i = i1) → fiber←→[q₀₀=q₀₁]-filler q₀₁ r p j u v l
; (j = i0) → fiber→[q₀₀=q₁₀=q₁₁]-filler q₀₁ r (fiber←[q₀₀=q₀₁=q₁₁] q₀₁ i r p .snd) i u v l
; (j = i1) → fiber←[q₀₀=q₀₁=q₁₁]-filler q₀₁ r p i l v u
; (u = i0) → push q₀₁ ((i ∨ (v ∧ l)) ∧ (v ∨ (i ∧ ~ l)))
; (u = i1) → fiber←[q₀₀=q₀₁=q₁₁] q₀₁ i r p .snd l v
; (v = i0) → push q₀₁ ((i ∨ u) ∧ ~ l)
; (v = i1) → push q₀₁ ((i ∧ ~ u) ∨ l) })
(push q₀₁ ((i ∨ (~ v ∧ u)) ∧ (~ v ∨ (i ∧ ~ u))))
module Fiber→
{x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) =
WedgeConnectivity m n
(leftFiber x₁ , (y₀ , q₁₀)) (leftConn x₁)
(rightFiber y₀ , (x₁ , q₁₀)) (rightConn y₀)
(λ (y₁ , q₁₁) (x₀ , q₀₀) →
(((r : inl x₀ ≡ inr y₁) → fiberSquarePush q₀₀ q₁₀ q₁₁ r → rightCode _ r)
, isOfHLevelΠ2 _ (λ x y → isOfHLevelTrunc _)))
(λ (y₁ , q₁₁) → ∣fiber→[q₀₀=q₁₀]∣ q₁₀ q₁₁)
(λ (x₀ , q₀₀) → ∣fiber→[q₁₁=q₁₀]∣ q₁₀ q₀₀)
(∣fiber→[q₀₀=q₁₀=q₁₁]∣ q₁₀)
fiber→ :
{x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀)
→ {x₀ : X}(q₀₀ : Q x₀ y₀) → {y₁ : Y}(q₁₁ : Q x₁ y₁)
→ (r : inl x₀ ≡ inr y₁)
→ fiberSquarePush q₀₀ q₁₀ q₁₁ r → rightCode _ r
fiber→ q₁₀ q₀₀ q₁₁ = Fiber→.extension q₁₀ (_ , q₁₁) (_ , q₀₀)
module Fiber←
{x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) =
WedgeConnectivity m n
(leftFiber x₀ , (y₁ , q₀₁)) (leftConn x₀)
(rightFiber y₁ , (x₀ , q₀₁)) (rightConn y₁)
(λ (y₀ , q₀₀) (x₁ , q₁₁) →
(((r : inl x₀ ≡ inr y₁) → push q₀₁ ≡ r → leftCodeExtended q₀₀ _ (push q₁₁) r)
, isOfHLevelΠ2 _ (λ x y → isOfHLevelTrunc _)))
(λ (y₀ , q₀₀) → ∣fiber←[q₁₁=q₀₁]∣ q₀₁ q₀₀)
(λ (x₁ , q₁₁) → ∣fiber←[q₀₀=q₀₁]∣ q₀₁ q₁₁)
(∣fiber←[q₀₀=q₀₁=q₁₁]∣ q₀₁)
fiber← :
{x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁)
→ {y₀ : Y}(q₀₀ : Q x₀ y₀) → {x₁ : X}(q₁₁ : Q x₁ y₁)
→ (r : inl x₀ ≡ inr y₁)
→ push q₀₁ ≡ r → leftCodeExtended q₀₀ _ (push q₁₁) r
fiber← q₀₁ q₀₀ q₁₁ = Fiber←.extension q₀₁ (_ , q₀₀) (_ , q₁₁)
module _
{x₀ x₁ : X}{y₀ y₁ : Y}
(q₀₀ : Q x₀ y₀)(q₁₁ : Q x₁ y₁)
(r : inl x₀ ≡ inr y₁) where
left→rightCodeExtended : leftCodeExtended q₀₀ _ (push q₁₁) r → rightCode _ r
left→rightCodeExtended =
rec (isOfHLevelTrunc _) (λ (q₁₀ , p) → fiber→ q₁₀ q₀₀ q₁₁ r p)
right→leftCodeExtended : rightCode _ r → leftCodeExtended q₀₀ _ (push q₁₁) r
right→leftCodeExtended =
rec (isOfHLevelTrunc _) (λ (q₀₁ , p) → fiber← q₀₁ q₀₀ q₁₁ r p)
{- Definition of one-side homotopy -}
module _
{x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) where
{- (x₀ , q₀₀) = (x₁ , q₁₀) -}
module _
{y₁ : Y}(q₁₁ : Q x₁ y₁)
(r : inl x₁ ≡ inr y₁)
(p : fiberSquarePush q₁₀ q₁₀ q₁₁ r) where
∣fiber→←[q₀₀=q₁₀]∣ : right→leftCodeExtended q₁₀ q₁₁ r (fiber→ q₁₀ q₁₀ q₁₁ r p) ≡ ∣ q₁₀ , p ∣ₕ
∣fiber→←[q₀₀=q₁₀]∣ =
(λ i → right→leftCodeExtended q₁₀ q₁₁ r (Fiber→.left q₁₀ (_ , q₁₁) i r p))
∙ recUniq {n = m + n} _ _ _
∙ (λ i → Fiber←.left q₁₁ (_ , q₁₀) i r (fiber→[q₀₀=q₁₀] q₁₀ q₁₁ r p .snd))
∙ (λ i → ∣ q₁₀ , fiber→←[q₀₀=q₁₀] q₁₀ q₁₁ r p i ∣ₕ)
{- (y₁ , q₁₁) = (y₀ , q₁₀) -}
module _
{x₀ : X}(q₀₀ : Q x₀ y₀)
(r : inl x₀ ≡ inr y₀)
(p : fiberSquarePush q₀₀ q₁₀ q₁₀ r) where
∣fiber→←[q₁₁=q₁₀]∣ : right→leftCodeExtended q₀₀ q₁₀ r (fiber→ q₁₀ q₀₀ q₁₀ r p) ≡ ∣ q₁₀ , p ∣ₕ
∣fiber→←[q₁₁=q₁₀]∣ =
(λ i → right→leftCodeExtended q₀₀ q₁₀ r (Fiber→.right q₁₀ (_ , q₀₀) i r p))
∙ recUniq {n = m + n} _ _ _
∙ (λ i → Fiber←.right q₀₀ (_ , q₁₀) i r (fiber→[q₁₁=q₁₀] q₁₀ q₀₀ r p .snd))
∙ (λ i → ∣ q₁₀ , fiber→←[q₁₁=q₁₀] q₁₀ q₀₀ r p i ∣ₕ)
{- q₀₀ = q₁₁ = q₁₀ -}
module _
(r : inl x₁ ≡ inr y₀)
(p : fiberSquarePush q₁₀ q₁₀ q₁₀ r) where
path→←Square =
(λ i j → right→leftCodeExtended q₁₀ q₁₀ r (Fiber→.homSquare q₁₀ i j r p))
∙₂ (λ i → recUniq {n = m + n} _ _ _)
∙₂ (λ i j → Fiber←.homSquare q₁₀ i j r (fiber→[q₀₀=q₁₀=q₁₁] q₁₀ i r p .snd))
∙₂ (λ i j → ∣ (q₁₀ , fiber→←hypercube q₁₀ r p i j) ∣ₕ)
∣fiber→←[q₀₀=q₁₀=q₁₁]∣ : ∣fiber→←[q₀₀=q₁₀]∣ q₁₀ ≡ ∣fiber→←[q₁₁=q₁₀]∣ q₁₀
∣fiber→←[q₀₀=q₁₀=q₁₁]∣ i r p = path→←Square r p i
fiber→← :
{x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀)
→ {x₀ : X}(q₀₀ : Q x₀ y₀) → {y₁ : Y}(q₁₁ : Q x₁ y₁)
→ (r : inl x₀ ≡ inr y₁)
→ (p : fiberSquarePush q₀₀ q₁₀ q₁₁ r)
→ right→leftCodeExtended q₀₀ q₁₁ r (fiber→ q₁₀ q₀₀ q₁₁ r p) ≡ ∣ q₁₀ , p ∣ₕ
fiber→← {x₁ = x₁} {y₀ = y₀} q₁₀ q₀₀' q₁₁' =
WedgeConnectivity.extension m n
(leftFiber x₁ , (y₀ , q₁₀)) (leftConn x₁)
(rightFiber y₀ , (x₁ , q₁₀)) (rightConn y₀)
(λ (y₁ , q₁₁) (x₀ , q₀₀) →
(( (r : inl x₀ ≡ inr y₁) → (p : fiberSquarePush q₀₀ q₁₀ q₁₁ r)
→ right→leftCodeExtended q₀₀ q₁₁ r (fiber→ q₁₀ q₀₀ q₁₁ r p) ≡ ∣ q₁₀ , p ∣ₕ )
, isOfHLevelΠ2 _ (λ x y → isOfHLevelTruncPath)))
(λ (y₁ , q₁₁) → ∣fiber→←[q₀₀=q₁₀]∣ q₁₀ q₁₁)
(λ (x₀ , q₀₀) → ∣fiber→←[q₁₁=q₁₀]∣ q₁₀ q₀₀)
(∣fiber→←[q₀₀=q₁₀=q₁₁]∣ q₁₀)
(_ , q₁₁') (_ , q₀₀')
{- Definition of the other side homotopy -}
module _
{x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) where
{- (x₁ , q₁₁) = (x₀ , q₀₁) -}
module _
{y₀ : Y}(q₀₀ : Q x₀ y₀)
(r : inl x₀ ≡ inr y₁)
(p : push q₀₁ ≡ r) where
∣fiber←→[q₁₁=q₀₁]∣ : left→rightCodeExtended q₀₀ q₀₁ r (fiber← q₀₁ q₀₀ q₀₁ r p) ≡ ∣ q₀₁ , p ∣ₕ
∣fiber←→[q₁₁=q₀₁]∣ =
(λ i → left→rightCodeExtended q₀₀ q₀₁ r (Fiber←.left q₀₁ (_ , q₀₀) i r p))
∙ recUniq {n = m + n} _ _ _
∙ (λ i → Fiber→.left q₀₀ (_ , q₀₁) i r (fiber←[q₁₁=q₀₁] q₀₁ q₀₀ r p .snd))
∙ (λ i → ∣ q₀₁ , fiber←→[q₁₁=q₀₁] q₀₁ q₀₀ r p i ∣ₕ)
{- (y₀ , q₀₀) = (y₁ , q₀₁) -}
module _
{x₁ : X}(q₁₁ : Q x₁ y₁)
(r : inl x₀ ≡ inr y₁)
(p : push q₀₁ ≡ r) where
∣fiber←→[q₀₀=q₀₁]∣ : left→rightCodeExtended q₀₁ q₁₁ r (fiber← q₀₁ q₀₁ q₁₁ r p) ≡ ∣ q₀₁ , p ∣ₕ
∣fiber←→[q₀₀=q₀₁]∣ =
(λ i → left→rightCodeExtended q₀₁ q₁₁ r (Fiber←.right q₀₁ (_ , q₁₁) i r p))
∙ recUniq {n = m + n} _ _ _
∙ (λ i → Fiber→.right q₁₁ (_ , q₀₁) i r (fiber←[q₀₀=q₀₁] q₀₁ q₁₁ r p .snd))
∙ (λ i → ∣ q₀₁ , fiber←→[q₀₀=q₀₁] q₀₁ q₁₁ r p i ∣ₕ)
{- q₀₀ = q₀₁ = q₁₁ -}
module _
(r : inl x₀ ≡ inr y₁)
(p : push q₀₁ ≡ r) where
path←→Square =
(λ i j → left→rightCodeExtended q₀₁ q₀₁ r (Fiber←.homSquare q₀₁ i j r p))
∙₂ (λ i → recUniq {n = m + n} _ _ _)
∙₂ (λ i j → Fiber→.homSquare q₀₁ i j r (fiber←[q₀₀=q₀₁=q₁₁] q₀₁ i r p .snd))
∙₂ (λ i j → ∣ q₀₁ , fiber←→hypercube q₀₁ r p i j ∣ₕ)
∣fiber←→[q₀₀=q₀₁=q₁₁]∣ : ∣fiber←→[q₁₁=q₀₁]∣ q₀₁ ≡ ∣fiber←→[q₀₀=q₀₁]∣ q₀₁
∣fiber←→[q₀₀=q₀₁=q₁₁]∣ i r p = path←→Square r p i
fiber←→ :
{x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁)
→ {y₀ : Y}(q₀₀ : Q x₀ y₀) → {x₁ : X}(q₁₁ : Q x₁ y₁)
→ (r : inl x₀ ≡ inr y₁)
→ (p : push q₀₁ ≡ r)
→ left→rightCodeExtended q₀₀ q₁₁ r (fiber← q₀₁ q₀₀ q₁₁ r p) ≡ ∣ q₀₁ , p ∣ₕ
fiber←→ {x₀ = x₀} {y₁ = y₁} q₀₁ q₀₀' q₁₁' =
WedgeConnectivity.extension m n
(leftFiber x₀ , (y₁ , q₀₁)) (leftConn x₀)
(rightFiber y₁ , (x₀ , q₀₁)) (rightConn y₁)
(λ (y₀ , q₀₀) (x₁ , q₁₁) →
(( (r : inl x₀ ≡ inr y₁) → (p : push q₀₁ ≡ r)
→ left→rightCodeExtended q₀₀ q₁₁ r (fiber← q₀₁ q₀₀ q₁₁ r p) ≡ ∣ q₀₁ , p ∣ₕ )
, isOfHLevelΠ2 _ (λ x y → isOfHLevelTruncPath)))
(λ (y₀ , q₀₀) → ∣fiber←→[q₁₁=q₀₁]∣ q₀₁ q₀₀)
(λ (x₁ , q₁₁) → ∣fiber←→[q₀₀=q₀₁]∣ q₀₁ q₁₁)
(∣fiber←→[q₀₀=q₀₁=q₁₁]∣ q₀₁)
(_ , q₀₀') (_ , q₁₁')
module _
{x₀ x₁ : X}{y₀ y₁ : Y}
(q₀₀ : Q x₀ y₀)(q₁₁ : Q x₁ y₁)
(r : inl x₀ ≡ inr y₁) where
left→right→leftCodeExtended :
(a : leftCodeExtended q₀₀ _ (push q₁₁) r)
→ right→leftCodeExtended q₀₀ q₁₁ r (left→rightCodeExtended q₀₀ q₁₁ r a) ≡ a
left→right→leftCodeExtended a =
sym (∘rec _ _ _ (right→leftCodeExtended q₀₀ q₁₁ r) a) ∙
(λ i → recId _ (λ (q₁₀ , p) → fiber→← q₁₀ q₀₀ q₁₁ r p) i a)
right→left→rightCodeExtended :
(a : rightCode _ r)
→ left→rightCodeExtended q₀₀ q₁₁ r (right→leftCodeExtended q₀₀ q₁₁ r a) ≡ a
right→left→rightCodeExtended a =
sym (∘rec _ _ _ (left→rightCodeExtended q₀₀ q₁₁ r) a) ∙
(λ i → recId _ (λ (q₀₁ , p) → fiber←→ q₀₁ q₀₀ q₁₁ r p) i a)
left≃rightCodeExtended : leftCodeExtended q₀₀ _ (push q₁₁) r ≃ rightCode y₁ r
left≃rightCodeExtended =
isoToEquiv (iso (left→rightCodeExtended _ _ _) (right→leftCodeExtended _ _ _)
right→left→rightCodeExtended left→right→leftCodeExtended)
{- Definition and properties of Code -}
module _ (x₀ : X)(y₀ : Y)(q₀₀ : Q x₀ y₀) where
leftCode' : (x : X){p : PushoutQ} → inl x ≡ p → inl x₀ ≡ p → Type ℓ
leftCode' x r' = leftCodeExtended q₀₀ x r'
leftCode : (x : X) → inl x₀ ≡ inl x → Type ℓ
leftCode x = leftCode' x refl
fiberPath : {x : X}{y : Y} → (q : Q x y) → leftCode' x (push q) ≡ rightCode y
fiberPath q i r = ua (left≃rightCodeExtended q₀₀ q r) i
pushCode :
{x : X}{y : Y} → (q : Q x y)
→ PathP (λ i → inl x₀ ≡ push q i → Type ℓ) (leftCode x) (rightCode y)
pushCode q i =
hcomp (λ j → λ { (i = i0) → leftCode _
; (i = i1) → fiberPath q j })
(leftCode' _ (λ j → push q (i ∧ j)))
Code : (p : PushoutQ) → inl x₀ ≡ p → Type ℓ
Code (inl x) = leftCode x
Code (inr y) = rightCode y
Code (push q i) = pushCode q i
{- Transportation rule of pushCode -}
transpLeftCode : (y : Y) → (q : Q x₀ y) → (q' : leftCodeExtended q₀₀ _ refl refl) → leftCode' _ (push q) (push q)
transpLeftCode y q q' =
transport (λ i → leftCode' _ (λ j → push q (i ∧ j)) (λ j → push q (i ∧ j))) q'
transpPushCodeβ' :
(y : Y) → (q : Q x₀ y) → (q' : leftCodeExtended q₀₀ _ refl refl)
→ transport (λ i → pushCode q i (λ j → push q (i ∧ j))) q' ≡ left→rightCodeExtended _ _ _ (transpLeftCode y q q')
transpPushCodeβ' y q q' i = transportRefl (left→rightCodeExtended _ _ _ (transpLeftCode y q (transportRefl q' i))) i
module _
{p : PushoutQ}(r : inl x₀ ≡ p) where
fiber-filler : I → Type ℓ
fiber-filler i = fiber' q₀₀ (λ j → r (i ∧ j)) (λ j → r (i ∧ j))
module _
(q : fiberSquare q₀₀ q₀₀ refl refl) where
transpLeftCode-filler : (i j k : I) → PushoutQ
transpLeftCode-filler i j k' =
hfill (λ k → λ { (i = i0) → push q₀₀ (~ j)
; (i = i1) → r (j ∧ k)
; (j = i0) → push q₀₀ (~ i)
; (j = i1) → r (i ∧ k) })
(inS (q i j)) k'
transpLeftCodeβ' :
{p : PushoutQ} → (r : inl x₀ ≡ p) → (q : fiberSquare q₀₀ q₀₀ refl refl)
→ transport (λ i → fiber-filler r i) (q₀₀ , q) ≡ (q₀₀ , λ i j → transpLeftCode-filler r q i j i1)
transpLeftCodeβ' r q =
J (λ p r → transport (λ i → fiber-filler r i) (q₀₀ , q) ≡ (q₀₀ , λ i j → transpLeftCode-filler r q i j i1))
(transportRefl _ ∙ (λ k → (q₀₀ , λ i j → transpLeftCode-filler refl q i j k))) r
transpLeftCodeβ :
(y : Y) → (q : Q x₀ y) → (q' : fiberSquare q₀₀ q₀₀ refl refl)
→ transpLeftCode y q ∣ q₀₀ , q' ∣ₕ ≡ ∣ q₀₀ , (λ i j → transpLeftCode-filler (push q) q' i j i1) ∣ₕ
transpLeftCodeβ y q q' = transportTrunc _ ∙ (λ i → ∣ transpLeftCodeβ' _ q' i ∣ₕ)
transpPushCodeβ :
(y : Y) → (q : Q x₀ y) → (q' : fiberSquare q₀₀ q₀₀ refl refl)
→ transport (λ i → pushCode q i (λ j → push q (i ∧ j))) ∣ q₀₀ , q' ∣ₕ
≡ ∣fiber→[q₀₀=q₁₀]∣ q₀₀ q (push q) (λ i j → transpLeftCode-filler (push q) q' i j i1)
transpPushCodeβ y q q' =
transpPushCodeβ' _ _ _
∙ (λ i → left→rightCodeExtended _ _ _ (transpLeftCodeβ _ _ q' i))
∙ recUniq {n = m + n} _ _ _
∙ (λ i' → Fiber→.left q₀₀ (_ , q) i' (push q) (λ i j → transpLeftCode-filler (push q) q' i j i1))
{- The contractibility of Code -}
centerCode : {p : PushoutQ} → (r : inl x₀ ≡ p) → Code p r
centerCode r =
transport (λ i → Code _ (λ j → r (i ∧ j))) ∣ q₀₀ , (λ i j → push q₀₀ (~ i ∧ ~ j)) ∣ₕ
module _
(y : Y)(q : Q x₀ y) where
transp-filler : (i j k : I) → PushoutQ
transp-filler = transpLeftCode-filler (push q) (λ i' j' → push q₀₀ (~ i' ∧ ~ j'))
transp-square : fiberSquare q₀₀ q₀₀ (push q) (push q)
transp-square i j = transp-filler i j i1
contractionCodeRefl' :
fiber→[q₀₀=q₁₀] q₀₀ q (push q) transp-square .snd ≡ refl
contractionCodeRefl' i j k =
hcomp (λ l → λ { (i = i0) → fiber→[q₀₀=q₁₀]-filler q₀₀ q (push q) transp-square j k l
; (i = i1) → transp-square (~ j ∨ l) k
; (j = i0) → push q (k ∧ (i ∨ l))
; (j = i1) → transp-square l k
; (k = i0) → push q₀₀ (j ∧ ~ l)
; (k = i1) → push q ((i ∧ ~ j) ∨ l) })
(transp-filler (~ j) k i)
contractionCodeRefl : centerCode (push q) ≡ ∣ q , refl ∣ₕ
contractionCodeRefl = transpPushCodeβ _ _ _ ∙ (λ i → ∣ q , contractionCodeRefl' i ∣ₕ)
module _
(y : Y)(r : inl x₀ ≡ inr y) where
contractionCode' : (a : fiber push r) → centerCode r ≡ ∣ a ∣ₕ
contractionCode' (q , p') = J (λ r' p → centerCode r' ≡ ∣ q , p ∣ₕ) (contractionCodeRefl _ q) p'
contractionCode : (a : Code _ r) → centerCode r ≡ a
contractionCode = elim (λ _ → isOfHLevelTruncPath) contractionCode'
isContrCode : isContr (Code _ r)
isContrCode = centerCode r , contractionCode
excision-helper :
(x : X) → Trunc (1 + m) (Σ[ y₀ ∈ Y ] Q x y₀)
→ (y : Y) → (r : inl x ≡ inr y) → isContr (Trunc (m + n) (fiber push r))
excision-helper x y' y r = rec (isProp→isOfHLevelSuc m isPropIsContr) (λ (y₀ , q₀₀) → isContrCode x y₀ q₀₀ y r ) y'
{- The Main Result : Blakers-Massey Homotopy Excision Theorem -}
Excision : (x : X)(y : Y) → isConnectedFun (m + n) (push {x = x} {y = y})
Excision x y = excision-helper x (leftConn x .fst) y
{-
We also give the following version of the theorem: Given a square
g
A --------------> C
|\ ↗ |
| \ ↗ |
| \ ↗ |
f | X | inr
| / |
| / |
| / |
v / v
B -----------> Pushout f g
inl
where X is the pullback of inl and inr
(X := Σ[ (b , c) ∈ B × C ] (inl b ≡ inr c)).
If f in n-connected and g in m-connected, then the diagonal map
A → X is (n+m)-connected
-}
private
shuffleFibIso₁ :
{ℓ ℓ' ℓ'' : Level} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''}
(f : A → B) (g : A → C) (b : B)
→ Iso (Σ[ c ∈ C ] Σ[ a ∈ A ] (f a ≡ b) × (g a ≡ c))
(Σ[ a ∈ A ] ((Σ[ c ∈ C ] (g a ≡ c)) × (f a ≡ b)))
shuffleFibIso₁ f g b =
compIso (invIso Σ-assoc-Iso)
(compIso (Σ-cong-iso-fst Σ-swap-Iso)
(compIso
(Σ-cong-iso-snd (λ y → Σ-swap-Iso))
(compIso Σ-assoc-Iso
(Σ-cong-iso-snd λ a → invIso Σ-assoc-Iso))))
shuffleFibIso₂ : {ℓ ℓ' ℓ'' : Level} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''}
(f : A → B) (g : A → C) (x : _)
→ Iso (Σ[ a ∈ A ] ((Σ[ c ∈ C ] (g a ≡ c)) × (f a ≡ x)))
(fiber f x)
shuffleFibIso₂ f g x = Σ-cong-iso-snd
λ a → compIso (Σ-cong-iso-fst
(isContr→Iso (isContrSingl (g a))
isContrUnit))
lUnit×Iso
module BlakersMassey□ {ℓ ℓ' ℓ'' : Level}
{A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''}
(f : A → B) (g : A → C) (n m : ℕ)
(con-f : isConnectedFun (suc n) f)
(con-g : isConnectedFun (suc m) g) where
{- Some abbreviations and connectivity -}
private
fib = doubleFib f g
B-con : (x : B) → isConnected (suc n) (Σ[ c ∈ C ] (fib x c))
B-con x =
isConnectedRetractFromIso (suc n)
(compIso
(shuffleFibIso₁ f g x)
(shuffleFibIso₂ f g x))
(con-f x)
C-con : (c : C) → isConnected (suc m) (Σ[ b ∈ B ] (fib b c))
C-con c =
isConnectedRetractFromIso (suc m)
(compIso
(compIso (Σ-cong-iso-snd
(λ _ → Σ-cong-iso-snd λ _ → Σ-swap-Iso))
(shuffleFibIso₁ g f c))
(shuffleFibIso₂ g f c))
(con-g c)
open module BM-f-g = BlakersMassey B C fib {m = n} B-con {n = m} C-con
fib× : (B × C) → Type _
fib× (b , c) = fib b c
PushoutGenPath× : B × C → Type _
PushoutGenPath× (b , c) = Path (PushoutGen fib) (inl b) (inr c)
PushoutPath× : B × C → Type _
PushoutPath× (b , c) = Path (Pushout f g) (inl b) (inr c)
{- The function in question -}
toPullback : A → Σ (B × C) PushoutPath×
toPullback a = (f a , g a) , push a
{- We redescribe toPullback as a composition of three maps,
two of which are equivs and one of which is (n+m)-connected -}
Totalfib×→Total : Σ (B × C) fib× → Σ (B × C) PushoutGenPath×
Totalfib×→Total =
TotalFun {A = B × C} {B = fib×} {C = PushoutGenPath×} (λ a → push)
isConnectedTotalFun : isConnectedFun (n + m) Totalfib×→Total
isConnectedTotalFun =
FunConnected→TotalFunConnected (λ _ → push) (n + m) (uncurry BM-f-g.Excision)
TotalPathGen×Iso : Iso (Σ (B × C) PushoutGenPath×) (Σ (B × C) PushoutPath×)
TotalPathGen×Iso =
Σ-cong-iso-snd λ x
→ congIso (invIso (IsoPushoutPushoutGen f g))
Totalfib×Iso : Iso (Σ (B × C) fib×) A
fun Totalfib×Iso ((b , c) , a , p) = a
inv Totalfib×Iso a = (f a , g a) , a , refl , refl
rightInv Totalfib×Iso _ = refl
leftInv Totalfib×Iso ((b , c) , a , (p , q)) i =
((p i) , (q i)) , (a , ((λ j → p (i ∧ j)) , (λ j → q (i ∧ j))))
toPullback' : A → Σ (B × C) PushoutPath×
toPullback' =
(fun TotalPathGen×Iso ∘ Totalfib×→Total) ∘ inv Totalfib×Iso
toPullback'≡toPullback : toPullback' ≡ toPullback
toPullback'≡toPullback =
funExt λ x → ΣPathP (refl , (sym (rUnit (push x))))
isConnected-toPullback : isConnectedFun (n + m) toPullback
isConnected-toPullback =
subst (isConnectedFun (n + m)) toPullback'≡toPullback
(isConnectedComp
(fun TotalPathGen×Iso ∘ Totalfib×→Total)
(inv Totalfib×Iso) (n + m)
(isConnectedComp (fun TotalPathGen×Iso) Totalfib×→Total (n + m)
(isEquiv→isConnected _ (isoToIsEquiv TotalPathGen×Iso) (n + m))
isConnectedTotalFun)
(isEquiv→isConnected _ (isoToIsEquiv (invIso Totalfib×Iso)) (n + m)))