diff --git a/CHANGELOG.md b/CHANGELOG.md index 78dea52440..26b29feae3 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -826,17 +826,23 @@ Deprecated names been made consistent so that `m`, `n` always refer to naturals and `i` and `j` always refer to integers: ``` + ≤-steps ↦ i≤j⇒i≤k+j + ≤-step ↦ i≤j⇒i≤1+j + + ≤-steps-neg ↦ i≤j⇒i-k≤j + ≤-step-neg ↦ i≤j⇒pred[i]≤j + n≮n ↦ i≮i - ∣n∣≡0⇒n≡0 ↦ ∣i∣≡0⇒i≡0 - ∣-n∣≡∣n∣ ↦ ∣-i∣≡∣i∣ - 0≤n⇒+∣n∣≡n ↦ 0≤i⇒+∣i∣≡i - +∣n∣≡n⇒0≤n ↦ +∣i∣≡i⇒0≤i - +∣n∣≡n⊎+∣n∣≡-n ↦ +∣i∣≡i⊎+∣i∣≡-i - ∣m+n∣≤∣m∣+∣n∣ ↦ ∣i+j∣≤∣i∣+∣j∣ - ∣m-n∣≤∣m∣+∣n∣ ↦ ∣i-j∣≤∣i∣+∣j∣ - signₙ◃∣n∣≡n ↦ signᵢ◃∣i∣≡i + ∣n∣≡0⇒n≡0 ↦ ∣i∣≡0⇒i≡0 + ∣-n∣≡∣n∣ ↦ ∣-i∣≡∣i∣ + 0≤n⇒+∣n∣≡n ↦ 0≤i⇒+∣i∣≡i + +∣n∣≡n⇒0≤n ↦ +∣i∣≡i⇒0≤i + +∣n∣≡n⊎+∣n∣≡-n ↦ +∣i∣≡i⊎+∣i∣≡-i + ∣m+n∣≤∣m∣+∣n∣ ↦ ∣i+j∣≤∣i∣+∣j∣ + ∣m-n∣≤∣m∣+∣n∣ ↦ ∣i-j∣≤∣i∣+∣j∣ + signₙ◃∣n∣≡n ↦ signᵢ◃∣i∣≡i ◃-≡ ↦ ◃-cong - ∣m-n∣≡∣n-m∣ ↦ ∣i-j∣≡∣j-i∣ + ∣m-n∣≡∣n-m∣ ↦ ∣i-j∣≡∣j-i∣ m≡n⇒m-n≡0 ↦ i≡j⇒i-j≡0 m-n≡0⇒m≡n ↦ i-j≡0⇒i≡j m≤n⇒m-n≤0 ↦ i≤j⇒i-j≤0 @@ -849,7 +855,7 @@ Deprecated names m_; z0 rewrite +-comm n m = m0 m+n≮n : ∀ m n → m + n ≮ n m+n≮n zero n = n≮n n -m+n≮n (suc m) (suc n) (sn⇒m∸n≢0 {n = suc n} (s≤s m>n) = m>n⇒m∸n≢0 m>n m≤n⇒n∸m≤n : ∀ {m n} → m ≤ n → n ∸ m ≤ n m≤n⇒n∸m≤n z≤n = ≤-refl -m≤n⇒n∸m≤n (s≤s m≤n) = ≤-step (m≤n⇒n∸m≤n m≤n) +m≤n⇒n∸m≤n (s≤s m≤n) = m≤n⇒m≤1+n (m≤n⇒n∸m≤n m≤n) --------------------------------------------------------------- -- Properties of _∸_ and _+_ @@ -1663,7 +1663,7 @@ pred[n]≤n {suc n} = n≤1+n n ≤pred⇒≤ : ∀ {m n} → m ≤ pred n → m ≤ n ≤pred⇒≤ {m} {zero} le = le -≤pred⇒≤ {m} {suc n} le = ≤-step le +≤pred⇒≤ {m} {suc n} le = m≤n⇒m≤1+n le ≤⇒pred≤ : ∀ {m n} → m ≤ n → pred m ≤ n ≤⇒pred≤ {zero} le = le @@ -1719,7 +1719,7 @@ m∸n≤∣m-n∣ m n with ≤-total m n ∣m-n∣≤m⊔n : ∀ m n → ∣ m - n ∣ ≤ m ⊔ n ∣m-n∣≤m⊔n zero m = ≤-refl ∣m-n∣≤m⊔n (suc m) zero = ≤-refl -∣m-n∣≤m⊔n (suc m) (suc n) = ≤-step (∣m-n∣≤m⊔n m n) +∣m-n∣≤m⊔n (suc m) (suc n) = m≤n⇒m≤1+n (∣m-n∣≤m⊔n m n) ∣-∣-identityˡ : LeftIdentity 0 ∣_-_∣ ∣-∣-identityˡ x = refl @@ -1882,7 +1882,7 @@ m≤∣m-n∣+n m n = subst (m ≤_) (+-comm n _) (m≤n+∣m-n∣ m n) ⌊n/2⌋≤n : ∀ n → ⌊ n /2⌋ ≤ n ⌊n/2⌋≤n zero = z≤n ⌊n/2⌋≤n (suc zero) = z≤n -⌊n/2⌋≤n (suc (suc n)) = s≤s (≤-step (⌊n/2⌋≤n n)) +⌊n/2⌋≤n (suc (suc n)) = s≤s (m≤n⇒m≤1+n (⌊n/2⌋≤n n)) ⌊n/2⌋; uncurry) open import Data.Sum.Base using ([_,_]′) @@ -1055,7 +1055,7 @@ module _ {P : Pred A p} (P? : Decidable P) where count≤n [] = z≤n count≤n (x ∷ xs) with does (P? x) ... | true = s≤s (count≤n xs) - ... | false = ≤-step (count≤n xs) + ... | false = m≤n⇒m≤1+n (count≤n xs) ------------------------------------------------------------------------ -- insert