-
Notifications
You must be signed in to change notification settings - Fork 27
/
LSTM.py
618 lines (517 loc) · 17.8 KB
/
LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
# coding: utf-8
# In[149]:
# MorseEncoder.py - Morse Encoder to generate training material for neural networks
# Generates raw signal waveforms with Gaussian noise and QSB (signal fading) effects
# Provides also the training target variables in separate columns.
#
# WPM= 40 # speed 40 words per minute
# Tq = 4. # QSB cycle time in seconds (typically 5..10 secs)
# sigma = 0.02 # add some Gaussian noise
# padded = if True then pad all characters to 32 dits long
#
# Example usage:
# P = signal('QUICK BROWN FOX JUMPED OVER THE LAZY FOX ',WPM,Tq,sigma,padded,verbose)
# from matplotlib.pyplot import plot,show,figure,legend
# from numpy.random import normal
# figure(figsize=(12,3))
# lb1,=plot(P.t,P.sig,'b',label="sig")
# lb2,=plot(P.t,P.dit,'g',label="dit")
# lb3,=plot(P.t,P.dah,'g',label="dah")
# lb4,=plot(P.t,P.ele,'m',label="ele")
# lb5,=plot(P.t,P.chr,'c',label="chr")
# lb6,=plot(P.t,P.wrd,'r*',label="wrd")
# legend([lb1,lb2,lb3,lb4,lb5,lb6])
# show()
# P.to_csv("MorseTest.csv")
#
# Copyright (C) 2015 Mauri Niininen, AG1LE
#
#
# MorseEncoder.py is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# MorseEncoder.py is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with bmorse.py. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
import pandas as pd
from numpy import sin,pi
from numpy.random import normal
pd.options.mode.chained_assignment = None #to prevent warning messages
Morsecode = {
'!': '-.-.--',
'$': '...-..-',
"'": '.----.',
'(': '-.--.',
')': '-.--.-',
',': '--..--',
'-': '-....-',
'.': '.-.-.-',
'/': '-..-.',
'0': '-----',
'1': '.----',
'2': '..---',
'3': '...--',
'4': '....-',
'5': '.....',
'6': '-....',
'7': '--...',
'8': '---..',
'9': '----.',
':': '---...',
';': '-.-.-.',
'>': '.-.-.', #<AR>
'<': '.-...', # <AS>
'{': '....--', #<HM>
'&': '..-.-', #<INT>
'%': '...-.-', #<SK>
'}': '...-.', #<VE>
'=': '-...-', #<BT>
'?': '..--..',
'@': '.--.-.',
'A': '.-',
'B': '-...',
'C': '-.-.',
'D': '-..',
'E': '.',
'F': '..-.',
'G': '--.',
'H': '....',
'I': '..',
'J': '.---',
'K': '-.-',
'L': '.-..',
'M': '--',
'N': '-.',
'O': '---',
'P': '.--.',
'Q': '--.-',
'R': '.-.',
'S': '...',
'T': '-',
'U': '..-',
'V': '...-',
'W': '.--',
'X': '-..-',
'Y': '-.--',
'Z': '--..',
'\\': '.-..-.',
'_': '..--.-',
'~': '.-.-',
' ': '_'}
def encode_morse(cws):
'''
Encode string of characters to a Morse code string (dit='.'/dah='-')
'''
s=[]
for chr in cws:
try: # try to find CW sequence from Codebook
s += Morsecode[chr]
if chr != ' ':
s += ' '
except:
if chr == ' ' or chr =='\n':
s += '_'
continue
print "error: %s not in Codebook" % chr
return ''.join(s)
def len_chr(ch):
s = Morsecode[ch]
return len_dits(s)
def len_dits(cws):
# length of string in dit units, include spaces
val = 0
for ch in cws:
if ch == '.': # dit len + el space
val += 2
if ch == '-': # dah len + el space
val += 4
if ch==' ': # el space
val += 2
if ch=='_': # el space
val += 7
return val
def signal(cw_str,WPM,Tq,sigma,padded,verbose=False):
# for given CW string i.e. 'ABC '
# return a pandas dataframe with signals and symbol probabilities
# WPM = Morse speed in Words Per Minute (typically 5...50)
# Tq = QSB cycle time (typically 3...10 seconds)
# sigma = adds gaussian noise with standard deviation of sigma to signal
cws = encode_morse(cw_str)
# calculate how many milliseconds this string will take at speed WPM
ditlen = 1200/WPM # dit length in msec, given WPM
if (padded):
msec = ditlen*len(cw_str)*32+7 # padded to 32
else:
msec = ditlen*(len_dits(cws)+7) # reserve +7 for the last pause
t = np.arange(msec)/ 1000. # time array in seconds
ix = range(0,msec) # index for arrays
# Create a DataFrame and initialize
col =["t","sig","dit","dah","ele","chr","wrd","spd"]
P = pd.DataFrame(index=ix,columns=col)
P.t = t # keep time
P.sig=np.zeros(msec) # signal stored here
P.dit=np.zeros(msec) # probability of 'dit' stored here
P.dah=np.zeros(msec) # probability of 'dah' stored here
P.ele=np.zeros(msec) # probability of 'element space' stored here
P.chr=np.zeros(msec) # probability of 'character space' stored here
P.wrd=np.zeros(msec) # probability of 'word space' stored here
P.spd=np.ones(msec)*WPM #speed stored here
#pre-made arrays of zeros and ones with multiple(s) of ditlen
z = np.zeros(ditlen)
z2 = np.zeros(2*ditlen)
z4 = np.zeros(4*ditlen)
dit = np.ones(ditlen)
dah = np.ones(3*ditlen)
# For all dits/dahs in CW string generate the signal, update symbol probabilities
# Note: this is very slow in Python and could be optimized a lot
i = 0
n = 0 #counter for elements until ' ' or '_'
for ch in cws:
prct=100.0*float(i)/float(msec)
if (i % 1000 ) == 0 and verbose:
print "Done: " + "{:.6f}".format(prct)+ "%"
if ch == '.':
dur = len(dit)
P.sig[i:i+dur] = dit
P.dit[i:i+dur] = dit
i += dur
n += dur
dur=len(z)
P.sig[i:i+dur] = z
P.ele[i:i+dur] = np.ones(dur)
i += dur
n += dur
if ch == '-':
dur = len(dah)
P.sig[i:i+dur] = dah
P.dah[i:i+dur]= dah
i += dur
n += dur
dur=len(z)
P.sig[i:i+dur] = z
P.ele[i:i+dur] = np.ones(dur)
i += dur
n += dur
if ch == ' ':
dur = len(z2)
P.sig[i:i+dur] = z2
P.chr[i:i+dur]= np.ones(dur)
i += dur
n += dur
if (padded):
fil = 32 - n
#print 'i:fil:n',i,fil,n
for j in range(fil):
dur = len(z)
#print 'j:i:dur',j,i,dur
P.sig[i:i+dur] = z
P.chr[i:i+dur]= np.ones(dur)
i += dur
n = 0
if ch == '_':
dur = len(z4)
P.sig[i:i+dur] = z4
P.wrd[i:i+dur]= np.ones(dur)
i += dur
n += dur
if (padded):
fil = 32 - n
#print 'i:fil:n',i,fil,n
for j in range(fil):
dur = len(z)
#print 'j:i:dur',j,i,dur
P.sig[i:i+dur] = z
P.chr[i:i+dur]= np.ones(dur)
i += dur
n = 0
if Tq > 0.: # QSB cycle time impacts signal amplitude
qsb = 0.5 * sin((1./float(Tq))*t*2*pi) +0.55
P.sig = qsb*P.sig
if sigma >0.:
P.sig += normal(0,sigma,len(P.sig))
return P
# Some helper functions to use 'one_hot' encoding for labels
num_classes = len(Morsecode)
label = np.zeros(num_classes)
def one_hot(ch):
label = np.zeros(num_classes)
try:
e = list(Morsecode.keys()).index(ch)
label[e] = 1
return label
except:
return label
def one_hot_labels(txt):
a = []
for ch in txt:
a.append(one_hot(ch))
return a
def print_label(ys):
s = []
for i in range(len(ys)):
c=ys[i:i+1].argmax()
if c ==0:
s += ' '
else:
s += list(Morsecode.keys())[c]
return s
print "number of classes (Morse characters):",num_classes
# In[152]:
# Open a sample training material text file
# and check the training file letter histogram
#f = open('random.txt','r')
#f = open('qbfjold.txt','r')
f = open('strings.txt','r')
txt = f.read()
def histogram(L):
print "char | freq"
d = {letter:L.count(letter) for letter in set(L)}
a = sorted(d)
for key in a:
print " {} | {}".format(key, d[key])
print "Training text length:",len(txt), " and character histogram:\n"
histogram(txt)
# In[153]:
# Create a training signal file
# this can take a long time ...
a=signal(txt,1200,0,0,True,True)
a.to_pickle('strings.pkl')
# In[155]:
# Read the text and training signal files
# create suitable formatted vectors for RNN training
import pandas as pd
#f = open('arrl2.txt','r')
f = open('strings.txt','r')
txt = f.read()
num_labels = len(txt)
a = pd.read_pickle('strings.pkl')
xs = a[["sig"]].as_matrix()
print "Length of training vector xs: ",len(xs)
ys = np.asarray(one_hot_labels(txt)).astype(np.float32)
xs = xs[:32*num_labels].astype(np.float32)
xs = xs.reshape(num_labels,32)
print "Reshaped training vectors:",xs.shape, ys.shape, len(txt),len(xs),"\n"
# plot 50 first Morse code lines (32 pix each ) and print 50 first one_hot encoded labels
import matplotlib.pyplot as plt
import matplotlib.cm as cm
get_ipython().magic(u'matplotlib inline')
im = xs[:50].reshape(50,32)
plt.imshow(im,cmap = cm.Greys_r)
print ''.join(print_label(ys[:50]))
# In[5]:
'''
A Recurrent Neural Network (LSTM) implementation example using TensorFlow library.
This is adapted from example using MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)
Long Short Term Memory paper: http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
Adapted by: Mauri Niininen (AG1LE) for Morse code
To classify Morse using a recurrent neural network, we consider every xs row as a sequence of dits & dahs
encoded as follows: dit = 1,0 and dah = 1,1,1,0 padded to 32 numbers
for example 'A' = [1,0,1,1,1,0,0 ... 0]
Labels are encoded with one_hot method in vector of 59 numbers.
for example 'A' = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.]
'''
import matplotlib.pyplot as plt
get_ipython().magic(u'matplotlib inline')
import tensorflow as tf
from tensorflow.models.rnn import rnn, rnn_cell
import numpy as np
# Setup the model & parameters
print "Setting up the model"
# Parameters
learning_rate = 0.001
training_iters = 24050 #was 100000
batch_size = 42 # was126
display_step = 10 #was 10
# Network Parameters
n_input = 1 # each Morse element is normalized to dit length 1
n_steps = 32 # timesteps (assumes that training material padded to 32 dit length)
n_hidden = 128 # hidden layer num of features = 128
n_classes = 60 # Morse character set - total classes 60 (26 letters+10 nums+ special chars)
# tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
istate = tf.placeholder("float", [None, 2*n_hidden]) #state & cell => 2x n_hidden
y = tf.placeholder("float", [None, n_classes])
y_hat = tf.placeholder("float", [None, n_classes])
# Define weights
weights = {
'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])), # Hidden layer weights
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
'hidden': tf.Variable(tf.random_normal([n_hidden])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
def RNN(_X, _istate, _weights, _biases):
# input shape: (batch_size, n_steps, n_input)
_X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
# Reshape to prepare input to hidden activation
_X = tf.reshape(_X, [-1, n_input]) # (n_steps*batch_size, n_input)
# Linear activation
_X = tf.matmul(_X, _weights['hidden']) + _biases['hidden']
# Define a lstm cell with tensorflow
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Split data because rnn cell needs a list of inputs for the RNN inner loop
_X = tf.split(0, n_steps, _X) # n_steps * (batch_size, n_hidden)
# Get lstm cell output
outputs, states = rnn.rnn(lstm_cell, _X, initial_state=_istate)
# Linear activation
# Get inner loop last output
return tf.matmul(outputs[-1], _weights['out']) + _biases['out']
pred = RNN(x, istate, weights, biases)
y_hat = tf.argmax(pred,1)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # Softmax loss
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Adam Optimizer
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.types.float32))
# Initializing the variables
init = tf.initialize_all_variables()
acc=[]
loss=[]
# Saving model
saver = tf.train.Saver() # defaults to saving all variables - in this case w and b
# In[6]:
import time
print "Launching training session"
# Launch the graph
start = time.time()
with tf.Session() as sess:
sess.run(init)
step = 0
# Keep training until reach max iterations
while step * batch_size < training_iters:
# get batch of data
batch_xs = xs[batch_size*step:batch_size*(step+1)]
batch_ys = ys[batch_size*step:batch_size*(step+1)]
# Reshape xs data to get 32 seq of 1 elements
batch_xs = batch_xs.reshape((batch_size, n_steps, n_input))
# Fit training using batch of data
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys,
istate: np.zeros((batch_size, 2*n_hidden))})
if step % display_step == 0:
# Calculate batch accuracy
ac = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys,
istate: np.zeros((batch_size, 2*n_hidden))})
acc.append(ac)
# Calculate batch loss
ls = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys,
istate: np.zeros((batch_size, 2*n_hidden))})
loss.append(ls)
print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(ls) + ", Training Accuracy= " + "{:.5f}".format(ac)
step += 1
print "Saving model checkpoint"
saver.save(sess, 'model.ckpt', global_step=step+1)
print "Optimization Finished!"
stop = time.time()
print "Training duration:","{:.1f} secs".format(stop-start)
# In[7]:
# plot resulting loss/accuracy curves
plt.figure(figsize=(12,6))
fig, ax1 = plt.subplots()
ax1.plot(acc, 'b')
ax1.set_xlabel('# of minibatches')
ax1.set_ylabel('Accuracy %', color='b')
for tl in ax1.get_yticklabels():
tl.set_color('b')
ax2 = ax1.twinx()
ax2.plot(loss, 'r')
ax2.set_ylabel('Loss', color='r')
for tl in ax2.get_yticklabels():
tl.set_color('r')
plt.show()
# In[8]:
import time
print "Launching prediction session"
y_hat = tf.cast(tf.argmax(pred,1), tf.types.float32)
# create a test input from string
ts_str = "QUICK BROWN FOX JUMPED OVER THE LAZY FOX 0123456789"
ts=signal(ts_str,1200,0,0.0,True)
xs = ts[["sig"]].as_matrix()
bs = xs.shape[0]/32
xs = xs[0:bs*32]
ys = np.zeros((bs,n_classes))
# uncomment next 2 lines to create one tes character
#bs =1
#xs = np.array([1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],dtype=float)
batch_xs =xs.reshape((bs,32,1))
print bs, ys.shape,xs.shape,batch_xs.shape
# load the model and predict label based on test input
predict = []
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state('.')
saver.restore(sess, ckpt.model_checkpoint_path)
start = time.time()
for i in range(bs):
pr = sess.run(y_hat, feed_dict={x: batch_xs[i:i+1].reshape((1,32,1)), y: ys,
istate: np.zeros((1, 2*n_hidden))})
predict += (Morsecode.keys()[int(pr[0])])
stop = time.time()
print "Prediction:",''.join(predict)
print "Duration:","{:.1f} sec".format(stop-start), " and ", "{:.4f} per character".format((stop-start)/bs)
# In[ ]:
import scipy.io.wavfile as sw
ts_str = "QUICK BROWN FOX JUMPED OVER THE LAZY FOX 0123456789"
WPM=20.
ts=signal(ts_str,12,0,0.1,True,False)
w = ts[["sig"]].as_matrix()
t = ts[["t"]].as_matrix()
dit = 1.200/WPM
print dit*t[len(t)-1]
Fs=8000.
Fo= 600.
s = sin(80*t*2*pi)*w
plt.plot(t[0:200],s[0:200])
sw.write('cw.wav',Fs,s)
# In[ ]:
# Open a sample training material text file
# and check the training file letter histogram
f = open('random.txt','r')
txt = f.read()
def histogram(L):
print "char | freq"
d = {letter:L.count(letter) for letter in set(L)}
a = sorted(d)
for key in a:
print " {} | {}".format(key, d[key])
print "Training text length:",len(txt), " and character histogram:\n"
histogram(txt)
# In[151]:
from random import randrange,paretovariate
from math import fmod
''.join(sorted(list(Morsecode)))
def create_random_text(strs,slen,alpha):
'''
Create strs number of strings with length of slen
Use pareto distribution to pull randomly from 4 different groups
if Alpha is large (>10) get almost 100% letters,
if Alpha is smaller (1..5) get mixture of letters, numbers and special chars
See https://en.wikipedia.org/wiki/Pareto_distribution
'''
s = []
chrs = sorted(list(Morsecode))
groups =[[29,55],[12,22],[0,11],[55,60]] #letters 29-55, numbers 12-22
for i in range(strs):
for j in range(slen):
val = paretovariate(alpha)-1 #pareto distribution
gn = int((val, 3)[val > 3]) # select the group characters are pulled from
s += chrs[randrange(groups[gn][0],groups[gn][1])] #select random char from group
s += ' '
return ''.join(s)
st = create_random_text(10000,10,2)
print st
f = open('strings.txt','w')
f.write(st)
# In[ ]: