Skip to content

Commit bee8a66

Browse files
committed
renaming helper struct to Vector_matching_point
updates following review
1 parent 98025ef commit bee8a66

File tree

3 files changed

+13
-13
lines changed

3 files changed

+13
-13
lines changed

BGL/include/CGAL/boost/graph/named_params_helper.h

+4-4
Original file line numberDiff line numberDiff line change
@@ -359,17 +359,17 @@ struct GetPolygonSoupGeomTraits
359359

360360
namespace internal {
361361
template <class Point, int d = CGAL::Ambient_dimension<Point>::value>
362-
struct Vector {
362+
struct Vector_matching_point {
363363
typedef typename Kernel_traits<Point>::Kernel::Vector_d type;
364364
};
365365

366366
template <class Point>
367-
struct Vector<Point, 2> {
367+
struct Vector_matching_point<Point, 2> {
368368
typedef typename Kernel_traits<Point>::Kernel::Vector_2 type;
369369
};
370370

371371
template <class Point>
372-
struct Vector<Point, 3> {
372+
struct Vector_matching_point<Point, 3> {
373373
typedef typename Kernel_traits<Point>::Kernel::Vector_3 type;
374374
};
375375
}
@@ -397,7 +397,7 @@ struct Point_set_processing_3_np_helper
397397

398398
typedef typename Geom_traits::FT FT; // public
399399

400-
typedef Constant_property_map<Value_type, typename internal::Vector<Point>::type> DummyNormalMap;
400+
typedef Constant_property_map<Value_type, typename internal::Vector_matching_point<Point>::type> DummyNormalMap;
401401
typedef typename Default::Get<NormalMap, DummyNormalMap>::type DefaultNMap;
402402

403403
typedef typename internal_np::Lookup_named_param_def<

Point_set_processing_3/doc/Point_set_processing_3/Point_set_processing_3.txt

+4-4
Original file line numberDiff line numberDiff line change
@@ -676,7 +676,7 @@ the Weighted Locally Optimal Projection (WLOP) algorithm \cgalCite{wlop-2009}.
676676

677677
Function `poisson_eliminate()` is a greedy down sampling method that generates
678678
a subset of the input points with Poisson disk property. This is an implementation of the
679-
Sample Elimination for Generating Poisson Disk Sample Sets \cgalCite{cgal:y-sefpdss}.
679+
<em>Sample Elimination for Generating Poisson Disk Sample Sets</em> method \cgalCite{cgal:y-sefpdss}.
680680

681681

682682
\subsection Point_set_processing_3Example_grid_simplification Grid Simplification Example
@@ -769,11 +769,11 @@ The Poisson sample elimination has the following parameters:
769769
double(*func)(const Point &p, const Point &n, double squared_distance, double r_max)
770770
\endcode
771771
The default weight is \f$\left(1 - \frac{d_{p,n}}{2r_{max}}\right)^8\f$ with \f$d_{p,n}\f$ being the distance between the point p and its neighbor n.
772-
- \f$r_{max}\f$: The \f$r_{max}\f$ parameter specifies the radius of the neighborhood, i.e., the neighboring points that are used to calculate the weight of a point. \f$r_{max}\f$ has to be provided if a custom *weight_function* is used. Only points within a distance of \f$r_{max}\f$ are used to calculate the weight of a point. A large value can thus cause a large running time. The default is calculated based in the bounding volume \f$V\f$ of the input points, the *dimensions* parameter and the number of input points \f$N\f$:
772+
- \f$r_{max}\f$: The \f$r_{max}\f$ parameter specifies the radius of the neighborhood, i.e., the neighboring points that are used to calculate the weight of a point. \f$r_{max}\f$ has to be provided if a custom *weight_function* is used. Only points within a distance of \f$r_{max}\f$ are used to calculate the weight of a point. A large value can thus cause a large running time. The default is calculated based in the bounding volume \f$V\f$ of the input points, the *dimension* parameter and the number of input points \f$N\f$:
773773

774-
\f$dimensions = 2:\qquad\f$ \f$r_{max} = \sqrt{\frac{V}{2\sqrt{3}N}}\f$
774+
\f$\mathrm{dimension} = 2:\qquad\f$ \f$r_{max} = \sqrt{\frac{V}{2\sqrt{3}N}}\f$
775775

776-
\f$dimensions = 3:\qquad\f$ \f$r_{max} = \sqrt{\frac{V}{4\sqrt{2}N}}\f$
776+
\f$\mathrm{dimension} = 3:\qquad\f$ \f$r_{max} = \sqrt{\frac{V}{4\sqrt{2}N}}\f$
777777

778778
- *progressive*: The output points of the function can be reordered to be progressive. A progressive ordering will increase the running time by a factor of at most 2 as the function is internally applied several times on increasingly smaller subsets. The default value is false.
779779

Point_set_processing_3/include/CGAL/poisson_eliminate.h

+5-5
Original file line numberDiff line numberDiff line change
@@ -30,27 +30,27 @@ namespace CGAL {
3030

3131
namespace internal {
3232

33-
double get_maximum_radius(std::size_t dimensions, std::size_t sample_size, double domain_size) {
33+
double get_maximum_radius(std::size_t dimension, std::size_t sample_size, double domain_size) {
3434
double sampleArea = domain_size / double(sample_size);
3535
double r_max;
36-
switch (dimensions) {
36+
switch (dimension) {
3737
case 2: r_max = CGAL::sqrt(sampleArea / (2.0 * CGAL::sqrt(3.0))); break;
3838
case 3: r_max = std::pow(sampleArea / (4.0 * CGAL::sqrt(2.0)), 1.0 / 3.0); break;
3939
default:
4040
double c;
4141
std::size_t d_start;
42-
if ((dimensions & 1)) {
42+
if ((dimension & 1)) {
4343
c = 2.0;
4444
d_start = 3;
4545
}
4646
else {
4747
c = CGAL_PI;
4848
d_start = 4;
4949
}
50-
for (std::size_t d = d_start; d <= dimensions; d += 2)
50+
for (std::size_t d = d_start; d <= dimension; d += 2)
5151
c *= 2.0 * CGAL_PI / double(d);
5252

53-
r_max = std::pow(sampleArea / c, 1.0 / double(dimensions));
53+
r_max = std::pow(sampleArea / c, 1.0 / double(dimension));
5454
break;
5555
}
5656
return r_max;

0 commit comments

Comments
 (0)