-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
56 lines (48 loc) · 1.91 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from tensorflow.keras.layers import Dropout
def cnn_binary(wm_dim):
np.random.seed(7)
tf.random.set_seed(7)
n_cls = 2
K.clear_session()
model = Sequential()
model.add(Conv2D(16, (3, 3), padding='same', activation='relu', input_shape=(wm_dim, wm_dim, 3)))
model.add(MaxPooling2D())
model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Conv2D(128, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dropout(0.25))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(n_cls, activation='softmax'))
model.compile('nadam', loss='categorical_crossentropy', metrics=['categorical_accuracy'])
return model
def cnn_multi(wm_dim):
np.random.seed(7)
tf.random.set_seed(7)
n_cls = 8
K.clear_session()
model = Sequential()
model.add(Conv2D(16, (3, 3), padding='same', activation='relu', input_shape=(wm_dim, wm_dim, 3)))
model.add(MaxPooling2D())
model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Conv2D(128, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dropout(0.25))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(n_cls, activation='softmax'))
model.compile('nadam', loss='categorical_crossentropy', metrics=['categorical_accuracy'])
return model