Skip to content

Latest commit

 

History

History

quantum_propagation

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Quantum Propagation Explorer

Quantum Propagation is an algorithm that replaces the Born rule for measurements with an infinite non-deterministic series (random paths) that converges to same probabilities. The cover of random paths is a research topic in Non-Deterministic Path Semantics.

Source

For instructions, see comments in the source.

Gallery

Here I post screenshots with formulas of interesting quantum functions.

The quantum function is f and the measurement is g.

  • g := and is a shorthand for g := \(a, b) = a && b.
  • g := eq is a shorthand for g := \(a, b) = a == b.

Each sample is a random path.

Andor

001.png

  • 20 000 samples
  • f := [(0, 1), (1, 0), (-1, 0), (0, 1)]
  • g := and

Symmetric Andor

002.png

  • 20 000 samples
  • f := [(0, 1), (2, 0), (-2, 0), (0, 1)]
  • g := and

Secret Library (Random)

003.png

  • 20 000 samples
  • f := [(0.53975284, 0.8347775), (-0.6443964, 0.28524667), (0.778826, 0.6626748), (0.84524584, 0.6032202)]
  • g := eq

Gravitational Lock (Random)

004.png

  • 20 000 samples
  • f := [(-0.69797146, -0.024551803), (-0.2906545, 0.67269856), (-0.99042594, -0.5189728), (-0.6754978, -0.5213077)]
  • g := and

Eruption (Random)

005.png

  • 20 000 samples
  • f := [(-0.5742652, -0.66125774), (0.5340726, -0.1768929), (-0.94883776, -0.21300188), (0.98182935, -0.90915376)]
  • g := eq

Dusty Lens (Random)

006.png

  • 20 000 samples
  • f := [(-0.18238503, -0.70073056), (0.7934853, -0.77827376), (0.46978903, 0.9165352), (-0.07867549, -0.4303975)]
  • g := and

Geysir (Random)

007.png

  • 20 000 samples
  • f := [(0.8935131, 0.9591373), (-0.05023841, 0.4859118), (-0.89832544, -0.49549758), (-0.5120574, -0.7996857)]
  • g := eq

Simulation (Random)

008.png

  • 20 000 samples
  • f := [(0.87223727, -0.36542666), (0.52803975, 0.38853496), (0.65145344, -0.9732157), (0.123947814, -0.54745203)]
  • g := eq

Intergalactic Road (Random)

009.png

  • 20 000 samples
  • f := [(0.15241292, -0.085435204), (-0.8511916, 0.57789814), (-0.27446622, -0.437507), (-0.10607258, 0.14709546)]
  • g := eq

Dragonfly (Random)

010.png

  • 20 000 samples
  • f := [(-0.20913196, -0.8422289), (-0.995504, -0.16501884), (0.5780767, -0.83560455), (-0.42357144, -0.5135646)]
  • g := eq

Messenger (Random)

011.png

  • 20 000 samples
  • f := [(0.101158865, -0.30092537), (-0.03949814, -0.29077327), (-0.8659539, 0.23232798), (0.34448284, 0.96728605)]
  • g := eq

Sun (Random)

012.png

  • 20 000 samples
  • f := [(-0.59925824, 0.08073656), (0.26387855, -0.9507098), (0.64888, 0.96241504), (0.9280084, -0.0011931247)]
  • g := and

Citron Cake (Random)

013.png

  • 20 000 samples
  • f := [(-0.91212034, -0.9685161), (-0.9454618, 0.95944816), (0.96339244, 0.24654308), (0.15042756, 0.11154972)]
  • g := and

The Lamppost (Random)

014.png

  • 20 000 samples
  • f := [(0.10193367, 0.03380558), (-0.9020964, 0.41431585), (-0.28806764, 0.15325238), (-0.3483436, -0.12292808)]
  • g := eq

Mithrandir (Random)

015.png

  • 20 000 samples
  • f := [(0.9315611, -0.82049036), (-0.37166578, -0.6874265), (-0.6722896, -0.7504237), (0.5782123, -0.24667512)]
  • g := eq