-
Notifications
You must be signed in to change notification settings - Fork 0
/
problem_026.py
51 lines (37 loc) · 1.22 KB
/
problem_026.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# coding: utf-8
'''
A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:
1/2 = 0.5
1/3 = 0.(3)
1/4 = 0.25
1/5 = 0.2
1/6 = 0.1(6)
1/7 = 0.(142857)
1/8 = 0.125
1/9 = 0.(1)
1/10 = 0.1
Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle.
Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part.
'''
def recurring_cycle_length(number):
decimals = []
remainder = 1
while remainder:
remainder = remainder % number
if remainder in decimals:
return len(decimals) - decimals.index(remainder)
decimals.append(remainder)
remainder *= 10
return 0
def test_recurring_cycle():
assert recurring_cycle_length(2) == 0
assert recurring_cycle_length(3) == 1
assert recurring_cycle_length(7) == 6
assert recurring_cycle_length(10) == 0
test_recurring_cycle()
def main():
_list = [recurring_cycle_length(n) for n in range(1, 1000)]
return _list.index(max(_list)) + 1 # index starts at 0
if __name__ == '__main__':
print(main())
# 983 in 300ms