|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [ |
| 8 | + { |
| 9 | + "name": "stderr", |
| 10 | + "output_type": "stream", |
| 11 | + "text": [ |
| 12 | + "Using TensorFlow backend.\n" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "name": "stdout", |
| 17 | + "output_type": "stream", |
| 18 | + "text": [ |
| 19 | + "Got the input data\n", |
| 20 | + "(1540728, 129, 16, 1)\n", |
| 21 | + "_________________________________________________________________\n", |
| 22 | + "Layer (type) Output Shape Param # \n", |
| 23 | + "=================================================================\n", |
| 24 | + "conv2d_1 (Conv2D) (None, 125, 12, 16) 416 \n", |
| 25 | + "_________________________________________________________________\n", |
| 26 | + "conv2d_2 (Conv2D) (None, 123, 10, 32) 4640 \n", |
| 27 | + "_________________________________________________________________\n", |
| 28 | + "conv2d_3 (Conv2D) (None, 119, 6, 64) 51264 \n", |
| 29 | + "_________________________________________________________________\n", |
| 30 | + "conv2d_transpose_1 (Conv2DTr (None, 121, 8, 32) 18464 \n", |
| 31 | + "_________________________________________________________________\n", |
| 32 | + "conv2d_transpose_2 (Conv2DTr (None, 125, 12, 16) 12816 \n", |
| 33 | + "_________________________________________________________________\n", |
| 34 | + "conv2d_transpose_3 (Conv2DTr (None, 129, 16, 1) 401 \n", |
| 35 | + "=================================================================\n", |
| 36 | + "Total params: 88,001\n", |
| 37 | + "Trainable params: 88,001\n", |
| 38 | + "Non-trainable params: 0\n", |
| 39 | + "_________________________________________________________________\n", |
| 40 | + "None\n", |
| 41 | + "Train on 1980 samples, validate on 20 samples\n", |
| 42 | + "Epoch 1/10\n" |
| 43 | + ] |
| 44 | + } |
| 45 | + ], |
| 46 | + "source": [ |
| 47 | + "import keras\n", |
| 48 | + "from keras.models import Sequential\n", |
| 49 | + "#from keras.layers import Dense, Dropout, Flatten\n", |
| 50 | + "from keras.layers import Conv2D, MaxPooling2D, Conv2DTranspose\n", |
| 51 | + "from keras import backend as K\n", |
| 52 | + "import pickle as pk\n", |
| 53 | + "batch_size = 1024\n", |
| 54 | + "epochs = 10\n", |
| 55 | + "import numpy as np\n", |
| 56 | + "import os\n", |
| 57 | + "cwd = os.getcwd()\n", |
| 58 | + "#x_train = os.path.join(cwd,'Noisy_TCDTIMIT/Babble/20/volunteers/01M/straightcam')\n", |
| 59 | + "#y_train = os.path.join(cwd,'Clean/volunteers/01M/straightcam')\n", |
| 60 | + "\n", |
| 61 | + "# pickle_train = open(\"noiseBabble_xtrain.pickle\",\"rb\")\n", |
| 62 | + "# x_train = pk.load(pickle_train)\n", |
| 63 | + "# pickle_trainlabel = open(\"cleanBabble.pickle\",\"rb\")\n", |
| 64 | + "# y_train = pk.load(pickle_trainlabel)\n", |
| 65 | + "\n", |
| 66 | + "x_train = np.load('Babbletrain.npy')\n", |
| 67 | + "y_train = np.load('Babblelabelclean.npy')\n", |
| 68 | + "\n", |
| 69 | + "print(\"Got the input data\")\n", |
| 70 | + "x_train = np.asarray(x_train)\n", |
| 71 | + "y_train = np.asarray(y_train)\n", |
| 72 | + "x_train = x_train.reshape(x_train.shape[0], 129, 16, 1)\n", |
| 73 | + "y_train = y_train.reshape(y_train.shape[0], 129, 16, 1)\n", |
| 74 | + "print(np.asarray(x_train).shape)\n", |
| 75 | + "\n", |
| 76 | + "model = Sequential()\n", |
| 77 | + "model.add(Conv2D(16, kernel_size=(5, 5),activation='relu',padding='valid',use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros',input_shape=(129,16,1)))\n", |
| 78 | + "model.add(Conv2D(32, (3, 3), activation='relu',padding='valid',use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros'))\n", |
| 79 | + "model.add(Conv2D(64, (5, 5), activation='relu',padding='valid',use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros'))\n", |
| 80 | + "#model.add(Conv2D(256, (7, 7), activation='relu',padding='valid',use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros'))\n", |
| 81 | + "#model.add(Conv2DTranspose(128, (3, 3), activation='relu',padding='valid',use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros'))\n", |
| 82 | + "model.add(Conv2DTranspose(32, (3, 3), activation='relu',padding='valid',use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros'))\n", |
| 83 | + "model.add(Conv2DTranspose(16, (5, 5), activation='relu',padding='valid',use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros'))\n", |
| 84 | + "model.add(Conv2DTranspose(1, (5, 5), activation='relu',padding='valid',use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros'))\n", |
| 85 | + "print(model.summary())\n", |
| 86 | + "\n", |
| 87 | + "#model.add(MaxPooling2D(pool_size=(2, 2)))\n", |
| 88 | + "#model.add(Dropout(0.25))\n", |
| 89 | + "#model.add(Flatten())\n", |
| 90 | + "#model.add(Dense(128, activation='relu'))\n", |
| 91 | + "#model.add(Dropout(0.5))\n", |
| 92 | + "#model.add(Dense(num_classes, activation='softmax'))\n", |
| 93 | + "\n", |
| 94 | + "model.compile(loss=keras.losses.mean_squared_error,\n", |
| 95 | + " optimizer=keras.optimizers.Adam(),\n", |
| 96 | + " metrics=['accuracy'])\n", |
| 97 | + "\n", |
| 98 | + "model.fit(np.asarray(x_train[0:2000]), np.asarray(y_train[0:2000]),\n", |
| 99 | + " batch_size=batch_size,\n", |
| 100 | + " epochs=epochs,\n", |
| 101 | + " validation_split = 0.01\n", |
| 102 | + " )\n", |
| 103 | + "\n", |
| 104 | + "#score = model.evaluate(x_train, y_train, verbose=0)\n", |
| 105 | + " \n", |
| 106 | + "#print('Test loss:', score[0])\n", |
| 107 | + "#print('Test accuracy:', score[1])\n" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": null, |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [], |
| 115 | + "source": [] |
| 116 | + } |
| 117 | + ], |
| 118 | + "metadata": { |
| 119 | + "kernelspec": { |
| 120 | + "display_name": "Python 3", |
| 121 | + "language": "python", |
| 122 | + "name": "python3" |
| 123 | + }, |
| 124 | + "language_info": { |
| 125 | + "codemirror_mode": { |
| 126 | + "name": "ipython", |
| 127 | + "version": 3 |
| 128 | + }, |
| 129 | + "file_extension": ".py", |
| 130 | + "mimetype": "text/x-python", |
| 131 | + "name": "python", |
| 132 | + "nbconvert_exporter": "python", |
| 133 | + "pygments_lexer": "ipython3", |
| 134 | + "version": "3.5.2" |
| 135 | + } |
| 136 | + }, |
| 137 | + "nbformat": 4, |
| 138 | + "nbformat_minor": 2 |
| 139 | +} |
0 commit comments