Skip to content

Commit b80cc2b

Browse files
committed
adding the necessary codes
1 parent 25aa8f0 commit b80cc2b

25 files changed

+122522
-0
lines changed

Diff for: codes/babble/babble_autoencoder_cnn_20db.ipynb

+523
Large diffs are not rendered by default.

Diff for: codes/babble/babble_spec_cnn_v0.0_basiccode.ipynb

+139
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,139 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": null,
6+
"metadata": {},
7+
"outputs": [
8+
{
9+
"name": "stderr",
10+
"output_type": "stream",
11+
"text": [
12+
"Using TensorFlow backend.\n"
13+
]
14+
},
15+
{
16+
"name": "stdout",
17+
"output_type": "stream",
18+
"text": [
19+
"Got the input data\n",
20+
"(1540728, 129, 16, 1)\n",
21+
"_________________________________________________________________\n",
22+
"Layer (type) Output Shape Param # \n",
23+
"=================================================================\n",
24+
"conv2d_1 (Conv2D) (None, 125, 12, 16) 416 \n",
25+
"_________________________________________________________________\n",
26+
"conv2d_2 (Conv2D) (None, 123, 10, 32) 4640 \n",
27+
"_________________________________________________________________\n",
28+
"conv2d_3 (Conv2D) (None, 119, 6, 64) 51264 \n",
29+
"_________________________________________________________________\n",
30+
"conv2d_transpose_1 (Conv2DTr (None, 121, 8, 32) 18464 \n",
31+
"_________________________________________________________________\n",
32+
"conv2d_transpose_2 (Conv2DTr (None, 125, 12, 16) 12816 \n",
33+
"_________________________________________________________________\n",
34+
"conv2d_transpose_3 (Conv2DTr (None, 129, 16, 1) 401 \n",
35+
"=================================================================\n",
36+
"Total params: 88,001\n",
37+
"Trainable params: 88,001\n",
38+
"Non-trainable params: 0\n",
39+
"_________________________________________________________________\n",
40+
"None\n",
41+
"Train on 1980 samples, validate on 20 samples\n",
42+
"Epoch 1/10\n"
43+
]
44+
}
45+
],
46+
"source": [
47+
"import keras\n",
48+
"from keras.models import Sequential\n",
49+
"#from keras.layers import Dense, Dropout, Flatten\n",
50+
"from keras.layers import Conv2D, MaxPooling2D, Conv2DTranspose\n",
51+
"from keras import backend as K\n",
52+
"import pickle as pk\n",
53+
"batch_size = 1024\n",
54+
"epochs = 10\n",
55+
"import numpy as np\n",
56+
"import os\n",
57+
"cwd = os.getcwd()\n",
58+
"#x_train = os.path.join(cwd,'Noisy_TCDTIMIT/Babble/20/volunteers/01M/straightcam')\n",
59+
"#y_train = os.path.join(cwd,'Clean/volunteers/01M/straightcam')\n",
60+
"\n",
61+
"# pickle_train = open(\"noiseBabble_xtrain.pickle\",\"rb\")\n",
62+
"# x_train = pk.load(pickle_train)\n",
63+
"# pickle_trainlabel = open(\"cleanBabble.pickle\",\"rb\")\n",
64+
"# y_train = pk.load(pickle_trainlabel)\n",
65+
"\n",
66+
"x_train = np.load('Babbletrain.npy')\n",
67+
"y_train = np.load('Babblelabelclean.npy')\n",
68+
"\n",
69+
"print(\"Got the input data\")\n",
70+
"x_train = np.asarray(x_train)\n",
71+
"y_train = np.asarray(y_train)\n",
72+
"x_train = x_train.reshape(x_train.shape[0], 129, 16, 1)\n",
73+
"y_train = y_train.reshape(y_train.shape[0], 129, 16, 1)\n",
74+
"print(np.asarray(x_train).shape)\n",
75+
"\n",
76+
"model = Sequential()\n",
77+
"model.add(Conv2D(16, kernel_size=(5, 5),activation='relu',padding='valid',use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros',input_shape=(129,16,1)))\n",
78+
"model.add(Conv2D(32, (3, 3), activation='relu',padding='valid',use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros'))\n",
79+
"model.add(Conv2D(64, (5, 5), activation='relu',padding='valid',use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros'))\n",
80+
"#model.add(Conv2D(256, (7, 7), activation='relu',padding='valid',use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros'))\n",
81+
"#model.add(Conv2DTranspose(128, (3, 3), activation='relu',padding='valid',use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros'))\n",
82+
"model.add(Conv2DTranspose(32, (3, 3), activation='relu',padding='valid',use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros'))\n",
83+
"model.add(Conv2DTranspose(16, (5, 5), activation='relu',padding='valid',use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros'))\n",
84+
"model.add(Conv2DTranspose(1, (5, 5), activation='relu',padding='valid',use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros'))\n",
85+
"print(model.summary())\n",
86+
"\n",
87+
"#model.add(MaxPooling2D(pool_size=(2, 2)))\n",
88+
"#model.add(Dropout(0.25))\n",
89+
"#model.add(Flatten())\n",
90+
"#model.add(Dense(128, activation='relu'))\n",
91+
"#model.add(Dropout(0.5))\n",
92+
"#model.add(Dense(num_classes, activation='softmax'))\n",
93+
"\n",
94+
"model.compile(loss=keras.losses.mean_squared_error,\n",
95+
" optimizer=keras.optimizers.Adam(),\n",
96+
" metrics=['accuracy'])\n",
97+
"\n",
98+
"model.fit(np.asarray(x_train[0:2000]), np.asarray(y_train[0:2000]),\n",
99+
" batch_size=batch_size,\n",
100+
" epochs=epochs,\n",
101+
" validation_split = 0.01\n",
102+
" )\n",
103+
"\n",
104+
"#score = model.evaluate(x_train, y_train, verbose=0)\n",
105+
" \n",
106+
"#print('Test loss:', score[0])\n",
107+
"#print('Test accuracy:', score[1])\n"
108+
]
109+
},
110+
{
111+
"cell_type": "code",
112+
"execution_count": null,
113+
"metadata": {},
114+
"outputs": [],
115+
"source": []
116+
}
117+
],
118+
"metadata": {
119+
"kernelspec": {
120+
"display_name": "Python 3",
121+
"language": "python",
122+
"name": "python3"
123+
},
124+
"language_info": {
125+
"codemirror_mode": {
126+
"name": "ipython",
127+
"version": 3
128+
},
129+
"file_extension": ".py",
130+
"mimetype": "text/x-python",
131+
"name": "python",
132+
"nbconvert_exporter": "python",
133+
"pygments_lexer": "ipython3",
134+
"version": "3.5.2"
135+
}
136+
},
137+
"nbformat": 4,
138+
"nbformat_minor": 2
139+
}

0 commit comments

Comments
 (0)