JSR 354 (Money & Currency) -
Specification

Anatole Tresch, Credit Suisse

Version 1.0
April 2015

Table of Contents

S S (0 Al B 4N {0 -0 10 (PP 1
I B U0 0T 16 (0 o) 2
0 R 54 0 1) o B4 0]) N 2
1.2, SPECITICATION GOALS ..ttt itiniitiiitiiet ittt eitetertreerterentraeaeeneneeneateneneeneanenenssntesenessensesensenennenens 3
R T o0) oL PP 3
1.4, REQUITEA JAVA VETSIOIL ¢.tuueuttnenetntt et etet ettt an et e etaneeraeaeaneeaaeaneaaetaaaeensaesananennaneananens 4
1.5. How this document iS OranIZedcovveruininiiiiiiieiiiereeeiie e reiretre s eeeererresnenenenrerenes 4
0T O 8 T 5
2.1. Scenario eCommerce (ONINe-ShopP)couiiieiiiii i e te et e eeenenereaaanens 5
2.2.5CeNATI0 TradiNg STt ... une ettt ettt ettt ettt e e e et e et s et taneeraearaneneaneananens 5
2.3. Scenario Virtual Worlds and Game POTTalsc.oeveiuiiiiiiiiiieiiieiiiiiiein e neenreeenes 6
2.4. Scenario SOCIAl MATKELSuiuininiiiiiiiii ittt ettt et e e e et e s e s e eneseeenes 6
2.5. Scenario Banking & Financial APPLCAtiONS «...uveeinieiiieiiii e r et s e eeereereaaanens 6
2.6. Scenario INSUTancCe & PEINISIONc.ueetiniiieit ittt ettt ettt e et e et e eeraeaeaneeaaeananens 7
3. REQUITEIMEIITS .. ueuieiiitieieie ettt et et e e et e eneretatrasasnensesanansasnsnsnennorsesesasnenensorensesasnenannes 8
3.1, COTE REQUITEIMIEIITS .t v euttneteneeenteteneneeneereneenenteneneenensenenssseanesensssssnessnssnsssensnsssesensenennenens 8
3.2. FOrmatting ReQUITEIMIEITS ... ueueiniiteie et eteeeten et e et eneeeaeeteneneensaeeneneenaaeeneaesasesenesnsnnenens 8
R TS T =N 2= o S D1 0] 610 f A PP 9
3.4. Non Functional ReqQUITEIMEITSeuieiiieieieeieiitre ettt rerneeenretaeresasneneerersesnsnenensonannes 9
T Y o =Tu 1 (oF= 10 o) 1 L PP 10
4.1. Package and ProjeCt STIUCTUTEouieiiieiiit it titet ittt ete et et e et e et eneeaaeaeaneaeaneaeanaaeanas 10
4.2. Money and CUrrenCy COTe API ittt ettt et et et e et rn et aneaeaneeanes 11
4.3. CUITEICY COMVETSIONL 1uuuinenintntntretnenenetenrereraenenseraeresasnenenreraesesasnensesersnsesssnsnsarensesasnsnens 37
4.4. Money and Currency Formatting APTcciuiuininiiiiiiiiiiiiiinn e 43
4.5. Money and CUTTENCY SPL......uinitiiiiir ettt ettt te et e eatan et raeataneeaaeaeeneaeanaaeensanenas 50
5. Meta-Data Contexts and QUery MOAelSo et e e ee e 66
T 0173 V4 1= 66
I o] 0 (o (60 11 (=) PP 67
5.3. Abstract Class AbstractConteXtBuilder......cocvvuiiiiiiiiiiiiiiiiiiii e, 68
5.4. ADStract Class ADSIraCtQUETY .. uuu ittt ettt ettt et e et e et e et e e e aeeeeneeeaaeannas 69
5.5. Abstract Class AbstractQuUeryBUILAeTcccvuiuiniiiiiiii i erre e e ans 70
6. Implementation ReCOMMENAATIONS .. .iuiuiniiiiiieiiiiiiinii ittt ettt teeneateteesasnenenes 70
ST B =) a4 1= 70
6.2. MOnetary ATTthIMetiC. . .un i ettt et e et ettt et e reeenaeannas 71
6.3. NUIMETIC PIrECISION 1uvueneininiiiiiiti ittt ettt st ee et et e e tneneeeretrasnsnenenseransesnnns 71
A 55:€:1 1110 (= O P PP PP PP 73
7.1. Working with org.javamoney. moneta.MONEYceueeeiereeetrnereeneeeeneneeeaeeneaeeneneenseneneneenens 73
7.2. Working with org.javamoney.moneta.FastMONEYeiiiuiiiiniiiieei e et enaeanns 76
7.3. Calculating @ TOtAL ..vuveinineiiiiii ettt e et e st e e ettt e e e a e e aas 77
7.4. Calculating a PreSent VAUcouinininiiiiiiiiiiir ettt e e e 79
7.5. Performing CUrrenCy CONVETISION ..ueueuiereeereeneneenrereeeesnenenenrersesesssnsnsesersnsesnsnsnsnsassnsesnsns 80

APPENDIX Lot e 81

Version Information:

Specification: JSR-354 Money and Currency API ("Specification")
Version: 1.0
Status: Final
Release: March 2015
Copyright: 2012-2015
Credit Suisse AG
P.0.Box
8070 Zurich
Switzerland
All rights reserved.

1. Introduction

This document is the specification of the Java API for Money and Currency. The technical objective is to
provide a money and currency API for Java, targeted at all users of currencies and monetary amounts,
both simple but also expandable. The API will provide support for standard [ISO-4217] and custom
currencies, and a model for monetary amounts and rounding. It will have extension points for adding
additional features like currency exchange, financial calculations and formulas. Additionally, this JSR
includes recommendations on interoperability and thread safety.

1.1. Expert group

This work is being conducted as part of JSR 354 under the Java Community Process. This specification
is the result of the collaborative work of the members of the JSR 354 Expert Group and the community
at large. The following persons have actively contributed to Java Money in alphabetical order:

* Greg Bakos

* Matthias Buecker (Credit Suisse)
» Stephen Colebourne

* Benjamin Cotton

* Jeremy Davies

* Manuela Grindei

* Thomas Huesler

* Scott James (Credit Suisse)

* Tony Jewell

* Werner Keil

* Bob Lee

* Simon Martinelli

* Sanjay Nagpal (Credit Suisse)
* Christopher Pheby

* Jefferson Prestes

* Arumugam Swaminathan

Mohamed Taman

* Anatole Tresch (Credit Suisse, Spec Lead)

1.2. Specification goals

Monetary values are a key feature of many applications, yet the JDK provides little or no support. The
existing java.util.Currency class is strictly a structure used for representing current [ISO-4217]
currencies, but not associated values or custom currencies. The JDK also provides no support for
monetary arithmetic or currency conversion, nor for a standard value type to represent a monetary
amount.

1.2.1. Specification Targets

JSR 354 targets to support all general application areas, e.g.
* eCommerce
* Banking

Finance & Investment

* Insurance and Pension

ERP systems
* etc.

This specification will not discuss low latency concerns as required for example by algorithmic trading
applications. Nevertheless the API was designed to support different implementations of monetary
amounts and allows for extension in several ways. So it should be flexible enough that corresponding
implementations can be used transparently to accommodate such applications.

As many applications in the financial area will quite probably use Java 7 for several years this JSR
supports both platforms, Java 7 as well as Java 8.

1.3. Scope

JSR 354 targets a standalone scope. Nevertheless we considered a later integration into the JDK, so its
design and scope must follow JDK patterns. Additionally the work on the JSR has shown, that it is
possible to define a flexible and comprehensive API that is not only be compatible with Java 7 and Java
8, but also with Java Embedded. Basically this affects usage of java.math and java.text. Nevertheless
the reference implementations are free to use existing functionality and the JSR also includes
requirements (also checkable by the TCK) to ensure a minimal set of functionality on Java SE 7 and SE
8. During the development of the JSR a wide set of features were implemented. Most of these features
will not end up within the JSR itself, enabling feature innovation elsewhere. The corresponding

libraries were avaailable under [JavaMoney] as an Apache 2 licensed open source project. Though
these libraries were removed from the JSR, their development ensured that scope was fully evaluated
and that the parts best suited to standardization were identified.

1.4. Required Java version

The specification supports Java SE platforms version 7 and 8 (in fact the Java 7 based API is even
compatible with Java 6). The Java 8 based API is backward compatible with the Java 7 version since its
only adding additional default method implementations to the API. Implementations hereby may
target any suitable Java SE version, or given an increasing SE/ME correlation also future ME versions.
The JSR consequently provides two reference implementations, one based on Java 7, one based on Java
8 language features. Since the Java 8 version is backward compatible the same TCK can be used for
testing both reference implementations. This allows to design an API, which will easily fit into Java 8
and beyond, but still supporting older releases.

1.5. How this document is organized
There are five main section in this document:

* Use cases

* Requirements

* Specification

* Implementation Recommendations

* An appendix

2. Use Cases

This section describes some, but not all, of the use cases that should be covered with this JSR.

2.1. Scenario eCommerce (Online-Shop)

One basic scenario that must be covered is a traditional web shop. Hereby products are presented and
collected in a shopping cart. Each product can be added once or multiple times to the cart. Some sites
also need to represent non integral amounts, such as 1.5kg of a product. Additionally a site may be
internationalized handling multiple currencies, perhaps controlled by user settings or address.
Summarizing this scenario implies the following requirements:

Prices for each item must be modelled by some monetary amount, representing a numeric amount
in a single currency.

The prices for all items in the cart must be calculated, this requires sum up all monetary amounts.

The user may change the number of each items to purchase, either by defining an integral number
(e.g. 2 products) or a decimal point number (e.g. 1.5 kg). This requires multiplication with integer and
decimal numbers.

Each item’s price must be presented to the customer with the required target currency and in the
format expected. This requires formatting of amounts and currencies according to the user’s Locale.

When changing the currency of a shopping cart, the catalog prices must be recalculated in the new
target currency. This requires accessing an exchange rate to be used and calculating the item amounts
with the new currency by performing currency conversion.

When a customer finally places an order, the total amount must be calculated, which may involve
tax calculation. This also requires multiplication of prices and flexible rounding to a bookable amount
(depending on the target currency).

Finally the amount to withdrawn from the credit card must be passed to a server system, that
handles credit card payments. This includes serialization of the amount and/or special formatting of
the amount into the format required by the remote server.

2.2. Scenario Trading Site

On a financial trading system or a site displaying several financial information such as quotes,
additional aspects must be considered. Basically, since for real time data must be paid, often data is
displayed that is so called deferred. Customers may be able to create virtual portfolios with arbitrary
instruments for simulation of investment strategies. To estimate a possible investment historic charts
and timelines are shown, which includes current, as well as statistical data. Depending on the
simulated investment also different precisions of the monetary amounts must be possible. Finally also
for evaluation of complex investment strategies or products very detailed arithmetic precision may be

required. Summarizing this scenario implies the following requirements:

A monetary amount representing a stock quote or other financial instrument, may have arbitrary
additional data attached, such as mapped quote keys, the origin stock exchange, the accuracy of the of
data (validity, current or deferred), as well as the data’s provider. Additionally the internal logic
typically requires that the data types wused, such as currencies and exchange rates, can be extended
with additional data, that is specific to the concrete use cases/implementation.

An exchange rate can be current, deferred or even historic and typically has a defined validity
scope.

Legal requirements may restrict the information presented (e.g. the currencies available) to the
user based on several aspects: geographic location of the client legal aspects, such as the client’s
contract ** others

This implies that access to financial data may be restricted based on several not predictable
classifications that must not match a country or locale.

2.3. Scenario Virtual Worlds and Game Portals

Virtual worlds, e.g. online games, define their own game money (but also Facebook has its own
money). User’s may obtain such virtual money by paying some real amount, e.g. by credit card. This
usage scenario implies the following requirements:

It must be possible to model completely virtual currencies. Since virtual money also can be
converted (paid) with real money, the price effectively defines an exchange rate.

Since several virtual game portals exist, also the number of virtual currencies can not be foreseen.
Additionally a virtual world may even define different currencies (e.g. Bitcoin).

Since such exchange rates may change during time, historization must also be supported.

2.4. Scenario Social Markets

Within social markets things are exchanged using a completely virtual currency, which has no relation
to any real currency. It is used as an arbitrary measurement of something meaningful only to that
social community. This usage scenario implies the following requirements:

It must be possible to model virtual currencies that are able to completely replace any real currency
schemes.

2.5. Scenario Banking & Financial Applications

Applications in financial institutes, such as a bank or insurance companies must model monetary
information in several ways: exchange rates, interest rates, stock quotes, current as well as historic

currencies must be supported. Typically in such companies also internal systems exist that define
additional schemas of financial data representation, e.g. for historic currencies, exchange rates, risk
analysis etc. Often such aspects can not be covered by the ISO 4217 currency standard. As example
imagine historic currencies, such as “Deutsche Reichsmark”, gold nuggets or even completely other
things. Additionally also within [ISO-4217] there are countries in Africa that share a common ISO code
(e.g. CFA), but nevertheless have different banknotes and coins per country. Also there are ambiguities
that may be confusing, such as USD, USS, USN, which all describe US dollars. This usage scenario
implies the following requirements:

Currencies as well as exchange rates must be historic, regional, and define their time validity range.
Currencies available may depend further from contract, current tenant or other aspects. The same may
also be true for rounding algorithms. Access to these features must be very flexible and capable of
behaving different depending on the current runtime context.

Customized or legacy system in big financial institutions may define additional, arbitrary currency
variants.

Such system may have additional data not covered by the JSR’s currency model, so it is important
that the model will be designed to be extensible.

Currencies of different type, must be mappable to each other.

2.6. Scenario Insurance & Pension

Complex calculation models are used within insurance and pension solutions, e.g. for scenario
simulation and forecasting. Different countries, companies or even investment strategies, have rather
different models implemented, that also may change quickly depending on legal changes. Such systems
are built of several isolated building blocks of different granularity size and complexity, starting from
simple sum of amounts until to complex investment strategy forecasts on an enterprise level. Such
systems imply the following requirements:

Building blocks should be modelled/organized in a common repository and accessible by a common
APIJ, that also allows introspection of the functionality available. This is a precondition so insurance
solutions can reuse the blocks for modeling the required business cases.

Input and Output data of calculations can be multivalued, e.g. for forecast scenarios, or statistical
data. Hereby the (value) types used can be completely different, such as numbers, amounts,
currencies, strategy identifiers, dates, time ranges, interest and exchange rates etc. So there must be a
structure to model such compound data.

3. Requirements

3.1. Core Requirements

Based on the scope and use cases described above the following core requirements can be identified:

1. The JSR must provide an API for handling and calculating with monetary amounts.

2. The JSR must support different numeric capabilities and guarantees to be provided by the monetary
amount implementations. These data is called monetary context and must be accessible from an

amount instance during runtime.

3. The JSR must specify a minimal set of interfaces for interoperability, since concrete usage scenarios
do not allow to define an implementation that is capable of covering all aspects identified.
Consequently it must be possible that implementations can provide several implementations for

monetary amounts.

4. The JSR must specify extension points for adding additional logic, e.g. for extending the arithmetic

capabilities, rounding, currencies, conversions, formats, statistics, filtering etc.

5. Meta-data must be accessible using a generic API, so custom requirements can be implemented and
context information not explicitly defined by this JSR is accessible using a unified access

mechanism.

6. The API for monetary amounts must allow to externalize the numeric part of an amount to the most
useful representation on a runtime platform. Similarly it must be possible to create a new amount
instance using an existing amount as a template, hereby changing currency and/or numeric part as
required. This ensures maximal portability and allows externalization of complex financial

calculations.

7. The JSR must provide a minimal set of roundings. This should include basic roundings for ISO

currencies, or roundings defined by a monetary context.

8. The JSR must also support arbitrary custom roundings.

3.2. Formatting Requirements

It must be possible to format and parse monetary amounts. Therefore the JSR defines a

MonetaryAmountFormat, which:
1. can format an amount into a String or into an Appendable.
2. can parse an amount from a CharSequence input.

3. supports different formatting styles and placement strategies for the currency part.

4. supports flexible number formatting similar to java.text.DecimalFormat.

5.

supports flexible grouping sizes and different grouping separators, e.g. Indian Rupees can be
formatted correctly. [java.text.NumberFormat only supports a fixed grouping size, e.g. 3. Indian
Rupees have different grouping sizes applied, e.g. INR 12,34,56,000.21]

6. supports rounding of amounts for display and reverse rounding during parsing.

3.3. Java EE Support

1.

This JSR must avoid restrictions that prevents its use in different runtime environments, such as
Java EE. Refer also to the section [Boostrap] for more details on possible EE/CDI integration.

3.4. Non Functional Requirements

1.

Since this JSR may be a candidate to be included into the JDK later, any possible extension to the
Java platform must be fully backward compatible.

. Implementation requirements for currencies must require only minimal (if any) extensions on the

existing java.util.Currency.

. The JSR must be self-contained, meaning it must be possible to use the JSR, without acquiring of

external resources, e.g. accessing resources in the internet.

. Interfaces defined should enable interoperability between different implementations, for data as

well as functional interoperability. The interfaces must cover all typical use cases, so casting to
concrete types should not be necessary normally.

. The API for monetary amounts must not expose its concrete numeric internal representation

during compile time.

. Where feasible method naming and style for currency modelling should be in alignment with parts

of the Java Collection API or java.time / [[JodaMoney]]:

a.same method name prefixes - of() for all factories, unless their inheritance e.g. from
java.lang.Enum - mandates otherwise, such as valueOf().

b. basic creational factory methods with little/no conversion are named of()

c. more complex factory methods, with some conversion, or requiring a specific name for clarity
are named ofXxx()

d. factories that extract/convert from a broadly specified input (where there is a good chance of
error) are named from()

e. parsing is explicitly named, as it is generally special, named parse()

f. overall monetary API feel should be similar to java.math.BigDecimal.

7. Queries and contexts may require adding additional time related data, such as POSIX timestamps
based on millisecond resolution as returned by System.currentTimeMillis() or other time types
based on new Java 8 date/time API. These aspects are not explicitly modelled, since they depend on
the capabilities of the corresponding providers and the Meta-Data Contexts and Query Models
capabilities provide good flexibility to implement these things effectively.

8. This JSR will probably also be used also for (business) critical software like real time trading and
similar systems. These systems and use cases require very specific parameters, which are
impossible to model by this JSR and may vary for different use cases, provider and/or companies. As
a solution attributable contexts and queries can be passed optionally that can contain arbitrary
parameters needed.

9. Though performance aspects can not directly targeted by this JSR, it is important that the JSR
considers performance aspects where possible, so that provided implementations are able to
optimize performance as required by the usage scenarios they are targeting.

4. Specification

4.1. Package and Project Structure

4.1.1. Package Overview
The JSR defines 4 packages:

javax.money

contains the main artifacts, such as CurrencyUnit, MonetaryAmount, MonetaryContext,
MonetaryOperator, MonetaryQuery, MonetaryRounding, and the singleton accessor Monetary. It is
discussed in section Money and Currency Core API. The meta-data context and query features are
discussed in Meta-Data Contexts and Query Models.

javax.money.conversion

contains the conversion artifacts ExchangeRate, ExchangeRateProvider, CurrencyConversion and the
according MonetaryConversions accessor singleton. It is discussed in section Currency Conversion.

javax.money.format

contains the formatting artifacts MonetaryAmountFormat, AmountFormatContext and the according
MonetaryFormats accessor singleton. It is discussed in section Money and Currency Formatting API.

javax.money.spi

contains the SPI interfaces provided by the JSR 354 API and the bootstrap logic, to support different
runtime environments and component loading mechanisms. It is discussed in section Money and
Currency SPI.

10

4.1.2. Module/Repository Overview
The JSR’s source code repository under [source] provides several modules:

jsr354-api
contains the JSR 354 API based on Java 8 as described by this specification.

jsr354-api-bp
contains the JSR 354 API based on Java 7 as described by this specification.

Jjsr354-ri

contains the 'moneta’ reference implementation based on Java 8 language features.

Jjsr354-ri-bp

contains the 'moneta’ reference implementation based on Java 7 language features.

jsr354-tck

contains the technical compatibility kit (TCK). The TCK is built using Java 7 but can be seemlessly be
used to test implementations based on Java 8.

javamoney-parent

is a root “POM” project for all modules under org.javamoney. This includes the RI/TCK projects, but
not jsr354-api (which is standalone).

Jjavamoney-library

contains a financial library (JavaMoney) adding comprehensive support for several extended
functionality, built on top of this JSR, but not part of the JSR.

Jjavamoney-examples

finally contains the examples and demos, and also is not part of this JSR.

4.2. Money and Currency Core API

The package javax.money contains the types representing currencies and monetary amounts, the core
exceptions as well as supporting types for rounding and the extensions API. Hereby the main artifacts
are as follows:

* CurrencyUnit models the minimal properties of a currency.

* MonetaryAmount defines what an amount’s capabilities are. It provides interoperability between
different implementations on functional level. Interoperability on data level is ensured by
getNumber () and getCurrency(). As a consequence amount can be implemented in different ways,
focusing on the behavioural and data representation requirements implied by the concrete use
cases.

11

* The abstract type NumberValue returns the numeric part of an amount, so it can be accessed and
externalized in different ways. Its purpose is to ensure maximal interoperability with existing
functionality in the JDK. Therefore it also extends java.lang.Number.

* NumberSupplier and CurrencySupplier model functional interfaces as defined by JDK 8.

* MonetaryOperator and MonetaryQuery model functional interfaces providing extension points for
monetary logic. They allow to implement external functionality, either adding operations returning
an amount (MonetaryOperator), or returning any arbitrary other value (MonetaryQuery).

* the MonetaryAmountFactory finally represents an abstraction for creating new instances of amounts.
Besides setting an amount currency and number value, it allows also to change the numeric
capabilities, if the underlying implementation supports doing this. The capabilities available for a
concrete factory can be queried by accessing the default and the maximal MonetaryContext

* MonetaryContext models the meta-data of MonetaryAmount instances, including a representation ot the
numeric capabilities of an instance as an immutable and platform independent type.

* CurrencyContext models the meta-data of a CurrencyUnit instance as an immutable and platform
independent type.

* RoundingContext models the meta-data of a MonetaryRounding instance as an immutable and platform
independent type.

* MonetaryAmountFactoryQuery models a query for evaluating instances of MonetatyAmountFactory given
concrete requirements/required capabilities.

e CurrencyQuery models a query for evaluating instances of CurrencyUnit given concrete
requirements/required capabilities.

* RoundingQuery models a query for evaluating instances of MonetaryRounding given concrete
requirements/required capabilities.

« MonetaryContextBuilder, CurrencyContextBuilder, RoundingContextBuilder,
MonetaryAmountFactoryQueryBuilder, CurrencyQueryBuilder, RoundingQueryBuilder all model the
builders necessary for creating instances of the several context and query classes.

* MonetaryException is the base exception class for the money API, it extends
java.lang.RuntimeException.

Finally the core module also contains base classes used for metadata and query modeling:

* AbstractContext models the abstract basic value type for additional context data, used in several
parts of this JSR. It provides the basic logic for implementing an immutable context internally using
a Map<String,0Object> store.

» AbstractQuery models the abstract query value type for querying monetary data from the different
singleton accessors provided. AbstractQuery extends AbstractContext.

12

* AbstractContextBuilder, AbstractQueryBuilder model the abstract basic builder types for builders
that create instances of AbstractContext, AbstractQuery, used in several parts of this JSR.

Refer to section Meta-Data Contexts and Query Models for more details.

There are people that would argue, that concrete immutable value types should be used
to model a monetary amount. This topic was discussed intensively in the expert group,
some of the aspects considered include:

* Using a concrete type as the model for a monetary amount implies a strong coupling
to a numeric representation. Unfortunately, as seen in the use cases and
requirements sections, performance and precision are conflicting requirements. So
modelling the amount as a concrete type would effectively prevent the flexibility

that is required.
NOTE
* Also using self-referencing template parameters was considered. The disadvantage

is that you still have to know the concrete class. In that case you could also use the
concrete class directly, instead of using non trivial generics semantics. Additionally
in many cases these complex semantics would lead quite probably to broad usage of
raw types, which will make the design quite counterproductive.

* The interface based design gives maximum flexibility, ensures interoperability on
data and operational level and still does not prevent its use in high performance,
low latency scenarios.

Nevertheless for an API to be complete, you need some type of concrete classes as entry points. Since
the API is designed as a standalone APIs the singleton accessor patterns are a good choice, so this API
provides according accessor classes. Summarizing the following singletons are available as part of the
JSR’s core module:

« Monetary

o provides access and query functionality to CurrencyUnit instances.
- provides access and query functionality to factories for creating MonetaryAmount instances.
o provides provides access and query functionality to MonetaryRounding instances.
Additionally the conversion and formatting module also provide singletons:
* MonetaryConversions for accessing CurrencyConversion and ExchangeRateProvider instances.
* MonetaryFormats for accessing MonetaryAmountFormat instances.

The following sections will describe these artifacts in more detail.

13

4.2.1. Modeling of Currencies

When thinking of monetary values it is inevitable to think on how a currency must be modeled.
Although the JDK already provides a java.util.Currency class, this JSR’s expert group discussed, if the
existing abstraction is sufficient or what kind of additions are necessary.

Fortunately a minimal interface CurrencyUnit could be extracted, that models almost a subset of the
existing functionality on java.util.Currency, so the existing class could easily implement the new
interface. Compared to java.util.Currency the new currency interface does not provide methods for
localizing a currency instance such as getDisplayName(Locale), getSymbol(Locale). This allows to
separate the different concerns of data modelling and formatting. Additionally the JSR’s currency
interface provides access to a CurrencyContext meta-data class, which is capable of providing arbitrary
meta-data on the current instance. This meta-data container can be used to store additional data, such
as the validity time range, corresponding regions or territories or provider data.

So the CurrencyUnit interface for currencies is modelled only with 4 methods as follows:

Interface CurrencyUnit

public interface CurrencyUnit{
String getCurrencyCode();
int getNumericCode();
int getDefaultFractionDigits();
CurrencyContext getContext();

Hereby

* the method getCurrencyCode() returns the unique currency code. Nevertheless since CurrencyUnit
also models non ISO currencies, the semantics for other currency types may be different: For ISO
currencies this will the 3-letter uppercase ISO code. For non ISO currencies no constraints are
defined.

* the numeric code returned by getNumericCode() is optional. If not defined it must be -1. In case of
ISO currencies the code must match the value of the corresponding ISO code. For alternate currency
scheme, if useful numeric code is defined for the currency, this code should be reflected
accordingly. A numeric code is defined to be unique within an underlying currency scheme, though
the JSR dies only support accessing currencies using their (unique) currency code.

* the default fraction digits define the typical scale of values with a given currency.

* the CurrencyContext models additional metadata of a currency unit (refer to section [metadata
modelling] for more details on contexts). It basically allows to evaluate the data provider of a
currency unit, but can also contain additional data as useful, determined by the implementation
that provided the currency instance. This context allows to support also more complex use cases for
extended currency meta-data such as:

14

- validity range, e.g. modelled as from/to LocalDate
o regional validity constraints
o provider validity constraints, e.g. the target stock exchange
o internal provider reference ids
o conversion service URLs
o related customer or contract information
o etc.
Furthermore implementations of CurrencyUnit

1. must implement equals/hashCode, considering the concrete implementation type, currency code
(which is defined to be unique) and the CurrencyContext.

2. must be comparable
3. must be immutable and thread safe.

4. must be serializable.

4.2.2. Modeling of Monetary Amounts

Modeling of monetary amounts agnostic to its concrete numeric representation was one of the key
design decisions. The final design is intended to provide for implementors to handle very different use
cases with distinct requirements. This was necessary since it has shown that different usage scenarios
of money can result in rather different requirements to the numeric representation of amounts, which
quite probably may not fit into a one-fits-it-all implementation.

One key aspect is that a monetary amount must always be related to a currency. Mixing of currencies
makes typically no sense for arithmetic operations on amount or, even worse, results in useless and
incorrect results. Properties and operations of monetary amounts are modeled by an interface, called
javax.money.MonetaryAmount. This enables effective data and functional interoperability. In general the
following aspects are modelled:

* Data interoperability allowing access to the amount’s

o

currency modeled as CurrencyUnit.

o number value, for externalization, modeled as NumberValue.

o

accessing basic numeric state such as negative, positive etc.

o

Methods for evaluating amount meta-data, such as numeric capabilities of the concrete type
(MonetaryContext).

15

Prototyping support for creating new MonetaryAmount instances based on the same implementation,
modeled by a MonetaryAmountFactory, which is accessible from each instance calling
MonetaryAmount.getFactory().

Comparison methods for comparing two arbitrary amounts of the same currency, hereby comparing
based on the (effective) numeric value (e.g. ignoring trailing zeroes).

Basic arithmetic operations like addition, subtraction, division, multiplication.

Functional extension points modeled as MonetaryOperator (returning amount instances of the same
implementation type) and MonetaryQuery (returning any result type).

The interface is defined as follows:

16

Interface MonetaryAmount

17

public interface MonetaryAmount{
CurrencyUnit getCurrency();
NumberValue getNumber();
MonetaryContext getContext();

// Create a factory that allows to create a new amount based on this amount
MonetaryAmountFactory<?> getFactory();

// Create an instance as a result of an external monetary operation
MonetaryAmount with(MonetaryOperator operator);

// Query data from an amount
<R> R query(MonetaryQuery<R> query);

// Comparison methods

boolean isGreaterThan(MonetaryAmount amount);

boolean isGreaterThanOrEqualsTo(MonetaryAmount amount);
boolean isLessThan(MonetaryAmount amount);

boolean isLessThanOrEqualsTo(MonetaryAmount amount);
boolean
boolean
boolean

isEqualTo(MonetaryAmount amount);
isNegative();
isPositive();

boolean
int signum();

// Algorithmic
MonetaryAmount
MonetaryAmount
MonetaryAmount
MonetaryAmount
MonetaryAmount
MonetaryAmount
MonetaryAmount
MonetaryAmount
MonetaryAmount
MonetaryAmount
MonetaryAmount
MonetaryAmount
MonetaryAmount
MonetaryAmount
MonetaryAmount
MonetaryAmount
MonetaryAmount
MonetaryAmount
MonetaryAmount

isZero();

functions and calculations
add(MonetaryAmount amount);
subtract(MonetaryAmount amount);
multiply(long amount);
multiply(double amount);
multiply(Number amount);
divide(long amount);

divide(double amount);
divide(Number amount);
remainder(long amount);
remainder(double amount);
remainder (Number amount);
divideAndRemainder(long amount);
divideAndRemainder(double amount);
divideAndRemainder (Number amount);
scaleByPowerOfTen(int power);
abs();

negate();

plus();

stripTrailingZeros();

Hereby

» getCurrency() returns the amount’s currency, modelled as CurrencyUnit. Implementations may co-
variantly change the return type to a more specific implementation of CurrencyUnit if desired.

e NumberValue getNumber() returns a NumberValue (discussed within the next section) that models the
numeric part of an amount for data interoperability.

» getContext() allows to access the monetary meta-data context of an amount, which may include
data similar to java.math.MathContext but also other arbitrary attributes determined by the
implementation (refer to section [metadata modelling] for more details on contexts).

* Instances of MonetaryOperator and MonetaryQuery<R> can be applied on a MonetaryAmount instance by
passing them to the with(MonetaryOperator) or query(MonetaryQuery) method. Whereas an operator
calculates a new amount based on a amount (an instance of an unary function), a query can return
arbitrary result types.

« isGreaterThan(MonetaryAmount), isLessThan(MonetaryAmount),
isGreaterThanOrEqualTo(MonetaryAmount) etc. model basic comparison methods, which are required
to work also when comparing different implementation types. This is possible, since the numeric
representation as well as the MonetaryContext can be accessed in a implementation agnostic way.
Also is important that the comparisons are based on the least significant numeric scale, e.g. CHF 1.05
and CHF 1.05000 are considered to be equal.

* The rest of the methods model common arithmetic operations that are often used in financial
applications. Adding and subtracting hereby is only possible with amounts that are of the same
currency (aka being currency compatible [Note that currency conversion is a complex aspect that
can not be performed implicitly or automatically. E.g. a conversion rate is dependent from the
target date and time, the currencies involved, the provider, the amount ...]) with the amount, on
which the operation is executed. The arithmetic methods should basically behave similar to
java.math.BigDecimal, always returning amounts with the same CurrencyUnit.

* The specification and interface do not define precisely how the amount is stored. Implementations
could use a BigDecimal, long or something else. The only constraint is that the numeric value can be
exposed as NumberValue and that the MonetaryContext returned reflects the numeric capabilities
accordingly.

When dealing with double values additional aspects must be considered:

* multiplying/adding/subtracting with POSITIVE_INFINITY should throw ArithmeticException
because it overflows

* multiplying/adding/subtracting with NEGATIVE_INFINITY should throw ArithmeticException
because it overflows

18

multiplying/adding/subtracting with NaN should throw ArithmeticException because the result is
NaN

* dividing by POSITIVE_INFINITY returns 0

* dividing by NEGATIVE_INFINITY returns 0

dividing/multiplying/adding/subtracting by NaN should throw ArithmeticException because the
result is NaN

Finally implementations of MonetaryAmount<T>

1. must implement equals/hashCode, hereby it is recommended considering
a. its implementation type
b. its CurrencyUnit
c. its numeric value, with any non significant trailing zeros truncated.
d. its meta-data context, modeled as MonetaryContext

2. must be thread safe and immutable.

3. must be comparable.

4. should be serializable.

5. should be final.

6. Finally implementations should not implement a method getAmount(). This method is reserved for
future integration into the JDK.

7. If the numeric representation allows to model -0, this value is also considered to be isZero()==true,
and additionally should be equal to 0.

8. This specification does no further constrain the constructor or factory methods to be implemented,
or the method signatures to be used.

This also means that two different implementations types with the same currency and
numeric value are NOT equal. For comparing two MonetaryAmount instances during
financial calculations the amount’s comparison methods should be used. E.g.
isEqualTo(MonetaryAmount) must return true, if they have equal currencies and equal
numeric values, hereby ignoring non-significant trailing zeros and different monetary
contexts.

NOTE

The interfaces MonetaryOperator and MonetaryQuery<R> provide a powerful extension mechanism. The
two interfaces operate as a form of the strategy pattern, allowing the algorithm of a query or operation
to be external to the implementation of MonetaryAmount. Their design matches JSR-310 (date & time).

19

4.2.3. Externalizing the Numeric Value of an Amount

In the previous section we have discussed the basic model of a monetary amount. For data
interoperability between different implementations it is very important that the numeric value of an
amount can be effectively externalized. This can be achieved by calling NumberValue getNumber(); on
MonetaryAmount.

Nevertheless simply returning java.lang.Number, is also not desired, since conversion to known types
may imply rounding errors or truncation. So NumberValue extends java.lang.Number, which is the basic
type used in the JDK, but NumberValue adds methods that help users to better identify the risks of
different externalization operations and provide functionality for effective access to the numeric data:

Abstract Class NumberValue

public abstract class NumberValue extends java.lang.Number{
public abstract Class<?> getNumberType();
public abstract int intValueExact();
public abstract long longValueExact();
public abstract double doubleValueExact();
public abstract <T extends Number> T numberValue(Class<T> numberType);
public abstract <T extends Number> T numberValueExact(Class<T> numberType);
public abstract int getPrecision();
public abstract int getScale();
public abstract long getAmountFractionNumerator();
public abstract long getAmountFractionDenominator();

Hereby

1. getNumberType() provides information about the numeric representation used internally. It explicitly
does not constrain the type returned to be a subtype of java.lang.Number to allow alternate
implementations to be used.

2. intValueExact(), TlongValueExact(), doubleValueExact() extend the methods defined in
java.lang.Number, with their exact variants. Exact means, that it is required to throw an
ArithmeticException, if the current numeric value must be truncated to fit into the required target
type. So in the following cases an exception must be thrown:

a. the current amount’s value exceeds the overall maximal value of the target type (overflow)
b. the current amount’s fraction value cannot be mapped into the target type (underflow)

3. the methods getAmountFractionNumerator() and getAmountFractionDenominator allow to extract the
fraction part of an amount in a flexible way.

4. numberValue(Class) allows accessing the numeric value hereby defining the required numeric
representation type. If needed the numeric value may be truncated to fit into the required type. The

20

following types must be supported:
a. Integer

b. Long
c. Float

d. Double

e. If available in the current runtime environment also: BigDecimal, BigInteger

5. numberValueExact(Class) works similarly to numberValue((Class), but the value returned must be
exact. It is required to throw an ArithmeticException, if the current numeric value must be
truncated to fit into the required target type. The types supported are similar to numberValue(Class).

6. getPrecision(), getScale() allows to access the current precision and scale of the numeric value.

4.2.4. Functional Extension Points: Operators and Queries

Since the model for monetary amounts only defines a minimal set of algorithmic functions and a
prototyping mechanism additional extension points are required to allow easily external functionality,
e.g. more complex financial operations, being applied on amounts. This is modelled by

* javax.money.MonetaryOperator, which models a function f(M1) M2, that converts an amount to
another amount, and

e javax.money.MonetaryQuery, which models a function f(M1) T, that converts an amount to any
type of result.

Note that interfaces in Java 7 and Java 8 have similar signatures, whereas Java 8 additionally is
annotated with the @FunctionalInterface annotation.

Monetary Operators

The interface javax.money.MonetaryOperator defines an arbitrary function f(M1) M2, that converts an
amount to another amount. Examples of such operations are rounding, currency conversion or
monetary calculations:

21

Interface MonetaryOperator (Java 7)
// Java 8

public interface MonetaryOperator{
MonetaryAmount apply(MonetaryAmount amount);

}
// Java 7

public interface MonetaryOperator{
MonetaryAmount apply(MonetaryAmount amount);

}

Monetary operators can be used to make any kind of change to the amount based on the original
amount. For example, the following requirements (not complete listing) would be covered:

* rounding of amounts, see section [MonetaryRounding]
* currency conversion, see section Currency Conversion
* financial calculations and formulas, see section [JavaMoney]

» other statistical use cases, e.g. by passing an operator to each element in a Collection of
MonetaryAmount or using the JDK 8 Streaming API.

* other monetary conversions

Implementations of MonetaryOperator are highly recommended to be
1. immutable and
2. thread-safe

A MonetaryOperator is typically invoked on the instance of an MonetaryAmount, passing the operator as a
parameter:

Example Usage of MonetaryOperator

MonetaryAmount amount
MonetaryOperator op = ..

MonetaryAmount result = amount.with(op);

Hereby, also looking at the signature of MonetaryOperator, the returned amount (implementation) type
must be the same as the amount type passed to the operator. This is also the case, when working with
interfaces, so given the example above the following is required to apply always:

22

MonetaryAmount amount
MonetaryOperator op = ..

MonetaryAmount result = amount.with(op);

assertTrue(amount.getClass()==result.getClass())

Fortunately this can be achieved easily, since the same constraint applies similarly
* to the type returned by the arithmetic operations on MonetaryAmount <1>.
* the type returned by the MonetaryAmountFactory accessible from each MonetaryAmount <2>.

So the following statements must also always apply:

<1> amount.getClass() == amount.multiply(2.5).getClass()
<2> amount.get(Class() == amount.getFactory().with(2.5).create().getClass()

The operator interface is equivalent to the UnaryOperator interface, which is a

NOTE
functional interface suitable for use with lambdas.

Monetary Queries

The interface javax.money.MonetaryQuery models a function f(M1) T, that converts an amount to any
type of result:

Interface MonetaryQuery
// Java 8

public interface MonetaryQuery<R> {
R queryFrom(MonetaryAmount<?> amount);

}

// Java 7
public interface MonetaryQuery<R> {
R queryFrom(MonetaryAmount<?> amount);

}

Queries can be used to make any kind of query against the data held in the amount. For example, the
following requirements (not complete listing) would be covered:

* Amount type conversion

* boolean queries (predicates), such as is negative, is zero or is currency widely traded

23

* splitting the amount into smaller amounts
* serialization to string/bytes, or other types

* accessing the amounts currency or properties in a functional way, additional to the supplier
interfaces already in place

Implementations of MonetaryQuery<R> should be
1. immutable and
2. thread-safe

A MonetaryQuery is typically invoked on an instance of MonetaryAmount, passing the query as a
parameter:

Usage Example for s MonetaryQuery

MonetaryAmount amount = ...
MonetaryQuery<Boolean> check4eyesPrincipleNeeded = ...
boolean isdeyesPrincipleNeeded = amount.query(check4eyesPrincipleNeeded);

NOTE The query interface is equivalent to the Function interface, which is a functional
interface suitable for use with Lambda expressions.

4.2.5. The Monetary Context

The monetary context (javax.money.MonetaryContext) models the monetary amount’s meta-data,
including the numeric capabilities (implementation) in a platform independent way (refer also to
section Meta-Data Contexts and Query Models for more details on contexts). Though it has some
similarities with java.math.MathContext for BigDecimal it is far more flexible, since different
implementations may add several attributes that be relevant. A MonetaryContext is basically used on the
following distinct use cases:

* It can be accessed on each instance of MonetaryAmount, hereby providing information about the
numeric capabilities of a concrete amount implementation instance without having to reference to
the concrete implementation class.

 Instances of MonetaryAmountFactory<T> supports creation of MonetaryAmount instances, hereby setting
explicitly the MonetaryContext required. In such a case the factory uses this monetary context to
determine the amount created. MonetaryAmountFactory.getDefaultMonetaryContext() returns the
default context used. Similarly the maximal supported capabilities of a MonetaryAmountFactory<T>
can be determined by calling MonetaryAmountFactory.getMaximalMonetaryContext(). Hereby the
maximal capabilities are determined:

o by the maximal scale, that an implementation type supports, without having to truncate any
parts of the numeric fraction

24

- by the maximal precision, that an implementation type supports, without having to truncate the

whole or the fractional part of an amount.

o basically additional aspects can be modelled as useful, but are not defined by this specification,

e.g. the MonetaryContext can also contain an amount flavor or some other implementation
priority, that can be used for determining, which amount type is best suited for some use case.
For additional aspects to be considered a corresponding instance of
[MonetaryAmountsSingletonQuerySpi] must be implemented and registered, with the according
component registration mechanism actually loaded by the JSR’s The Bootstrapping Mechanism
component.

The MonetaryContext is modeled as an immutable type as follows:

Class MonetaryContext

public final class MonetaryContext extends AbstractContext
implements Serializable{

public int getPrecision();

public int getMaxScale();

public boolean isFixedScale();

public Class<? extends MonetaryAmount> getAmountType();
public MonetaryContextBuilder toBuilder();

Hereby

getPrecision(), getMaxScale(), isFixedScale() define common numeric capabilities.
getAmountType() gives access to the amount’s implementation type used.

new instances are built using an instance of MonetaryContextBuilder, which also can be accessed
from each MonetaryContext instance.

the inherited AbstractContext provides access to additional non standard context properties, see
AbstractContext.

The example below creates a MonetaryContext matching amount implementations that are performance
optimized, that have a maximal precision of 12, with a maximal scale of 2 and should be rounded up:

25

Class MonetaryContext

enum MyFlavor{ // only an example, not part of the API
SLOW. FAST
}

MonetaryContext ctx = MonetaryContextBuilder.of()
.setMaxScale(2)
.setFixedScale(true)
.setPrecision(12)
.set(RoundingMode.UP)
.set(MyFlavor.FAST)
.build();

For further details on contexts, related builders and meta-data modeling, refer to section Meta-Data
Contexts and Query Models.

4.2.6. Creating Monetary Amount Instances

Basically new instances of MonetaryAmount can be created in different ways. One way [Types may also
be instantiated directly depending on the implementation.] will be by using factories, modeled by the
interface javax.money.MonetaryAmountFactory<T>. Instances can be obtained in different ways

* calling getFactory() on an any instance of MonetaryAmount, returns an instance that is pre-initialized
with the current amount’s values, allowing for easily creation of similar amount instances, with
some or multiple properties changed. This is known as the prototype pattern [[GoF]]. This is useful
for MonetaryOperator implementations, where the default operations available on MonetaryAmount are
not sufficient for implementing the logic/result required, or calculations are done externally and a
new amount is created with the numeric result of that calculation.

¢ the Monetary singleton also provides access to MonetaryAmountFactory instances, hereby also allowing
to bind to a specific implementation type or query for matching MonetaryAmountFactory instances:

Usage Example for creating an Amount, using an explicit type

MonetaryAmountFactory<MyMoney> fact = Monetary.getAmountFactory(MyMoney.class);
MyMoney money = fact.setCurrency("USD").setNumber(10.50).create();

More complex evaluations of MonetaryAmountFactory instances can be performed as only constraint by
the registered SPIs (see Money and Currency SPI) using MonetaryAmountFactoryQuery and its related
Builder class:

26

Usage Example for querying for a MonetaryAmountFactory

MonetaryAmountFactory<?> fact = Monetary.getAmountFactory(
MonetaryAmountFactoryQueryBuilder.of()
.setMaxScale(?2)
.setPrecision(10)
.build());
MonetaryAmount money = fact.setCurrency("USD").setNumber(10.50).create();

As illustrated above the signature of MonetaryAmountFactory is modelled as a builder also supporting a
fluent programming style:

Interface MonetaryAmountFactory

public interface MonetaryAmountFactory<T extends MonetaryAmount> {
(lass<T> getAmountType();
MonetaryContext getDefaultMonetaryContext();
MonetaryContext geMaximalMonetaryContext();

MonetaryAmountFactory<T> setCurrency(CurrencyUnit currency);
MonetaryAmountFactory<T> setNumber(double number);
MonetaryAmountFactory<T> setNumber(long number);
MonetaryAmountFactory<T> setNumber (Number number);
MonetaryAmountFactory<T> setContext(MonetaryContext ctx);
MonetaryAmountFactory<T> setCurrency(String code);
MonetaryAmountFactory<T> setAmount(MonetaryAmount amount);

T create();

Hereby

27

create returns a new instance of T based on the current properties of the factory instance.

If no MonetaryContext has been set explicitly a default MonetaryContext is used, which can be
determined by calling getDefaultMonetaryContext().

The maximal supported MonetaryContext can also be determined by calling
getMaximalMonetaryContext().

getAmountType() returns the amount implementation class that will be created by a given factory
instance.

setAmount(MonetaryAmount) allow to initialize the factory with the values from any arbitrary amount.
If the amount passed hereby exceeds the maximal MonetaryContext that can be supported, a
MonetaryException must be thrown.

* the other setXXX methods allow to set other aspects of the MonetaryAmount to be created, such as
o the CurrencyUnit (either directly or by passing a currency code)

> the number value, hereby if a numeric value passed, that exceeds the representation capabilities
of the targeted amount implementation (or more precise: exceed the capabilities of the maximal
MonetaryContext), the following strategy should be implemented:

= If the current implementation supports extending the MonetaryContext wused, the
MonetaryContext should be extended to accommodate the precision and scale required, e.g. an
implementation based on java.math.BigDecimal can be constrained to a MathContext.DECIMALG4,
but can be easily extended to support bigger precisions.

= If the current implementation is not able to reflect the numeric value required without doing
any significant truncation, it must throw an ArithmeticException.

4.2.7. Accessing Currencies, Amounts and Roundings

All JSR’s main artifacts are accessible by corresponding singleton accessor classes. Hereby the exact
behaviour of the singletons are delegated to corresponding SPI's. This allows to implement runtime
dependent behaviour that can be different for different runtime environments, e.g. use CDI based
contextual implementations, instead of the default SE ServiceLoader based component lifecycle. Refer
to section Money and Currency SPI for more details.

Accessing Currencies

The javax.money.Monetary singleton class implements an accessor for CurrencyUnit instances. Each
implementation must also provide/include a provider that uses java.util.Currency as a backend. But
this JSR in addition allows registration of additional currencies by implementing instances of
CurrencyProviderSpi (refer to section [CurrencyProviderSpi]):

28

Monetary Singleton (Currency related methods)

public final class Monetary{
private Monetary(){}

public static CurrencyUnit getCurrency(String currencyCode, String... providers);
public static CurrencyUnit getCurrency(Locale locale, String... providers);

public static Set<CurrencyUnit> getCurrencies(Locale locale, String... providers);
public static boolean isCurrencyAvailable(String currencyCode, String... providers);
public static boolean isCurrencyAvailable(Locale locale, String... providers);
public static boolean isCurrencyAvailable(CurrencyQuery query);

public static Set<CurrencyUnit> getCurrencies(String... providers);

public static Collection<CurrencyUnit> getCurrencies(CurrencyQuery query);

public static Set<String> getCurrencyProviderNames();

public static List<String> getDefaultCurrencyProviderChain();

[...]

Hereby

29

access is provided based on Locale, or by using the currency code. Implementations must at least
provide the same locales and codes as supported by java.util.Currency. Additionally (compared to
java.util.Currency) it is also possible to access multiple currencies per Locale.

additional CurrencyUnit can be added by registering instances of the CurrencyProviderSpi as
explained within the section Money and Currency SPI later.

whereas, similar to java.util.Currency accessing a currency that does not exist, throws an
I1legalArgumentException, the isCurrencyAvailable() methods allow to check if a currency code or
Locale is defined, before accessing it.

getCurrencies(String) allows to access all currencies currently known by this singleton (which
delegates to the known [MonetaryCurrencyProviderSpi] instances).

All access methods above also allow to pass an ellipse operator of provider names. If not set
explicitly the default providers and ordering as defined by getDefaultProviderNames() must be used.
Hereby

o if only a single valued result is returned (CurrencyUnit, boolean), the provider chain is evaluated
until the first provider returns true or a non-null CurrencyUnit instance.

o in case of multi valued results all values returned by the providers are added to the result
collection (List, Set, Collection).

All available provider names are accessible from getProviderNames(). Hereby each provider name
maps to exact one instance of CurrencyProviderSpi. Refer to section [CurrencyProviderSpi] for more
details.

* The default provider names and ordering are accessible from getDefaultProviderNames().

* Finally the method getCurrencies(CurrencyQuery) gives you maximal flexibility for accessing
currencies, e.g.

Example for querying currencies

// Note: Enum Region only serves as an example and not part of the API
Collection<CurrencyUnit> currencies = Monetary.getCurrencies(
CurrencyQueryBuilder.of()

.setProvider("A", "B")

.set(Region.EMEA)

.set("contractNr", 12345)

.build()
)i

The query interface also is flexible enough to support access to historic currencies. As an example, if
an according provider would be implemented and registered one could perform the following query:

Example for querying historic currencies

// Note: This is just an example: no historic provider is part of the API or RI currently
Collection<CurrencyUnit> currencies = Monetary.getCurrencies(
CurrencyQueryBuilder.of()
.set(Locale.GERMANY)
.setTimestamp(LocalDate.of(1930,1,1))
.build()
);

The default provider chain can be configured within the javamoney.properties configuration file,
located in the classpath as follows:
javamoney.properties Configuration of default currencies provider chain

Defaults for java money

javax.money.defaults.Monetary.currencyProviderChain=provider1,provider2,provider3

Accessing Monetary Amount Factories

The javax.money.Monetary singleton class implements also an accessor for MonetaryAmountFactory
instances. Hereby for not hard-coding the selection algorithm and for enabling contextual behaviour in
a EE context, the singleton is backed up by [MonetaryAmountsSingletonSpi] and
[MonetaryAmountsSingletonQuerySpi], that can be registered using the JSR’s The Bootstrapping Mechanism
mechanism.

30

Monetary Singleton (Amount Related Methods)

public final class Monetary{
private Monetary(){}

public static <T extends MonetaryAmount> MonetaryAmountFactory<T> getAmountFactory
(Class<T> amountType);

public static MonetaryAmountFactory<?> getDefaultAmountFactory();

public static Collection<MonetaryAmountFactory<?>> getAmountFactories(){

public static Set<(Class<? extends MonetaryAmount>> getAmountTypes();

public static Class<? extends MonetaryAmount> getDefaultAmountType();

public static MonetaryAmountFactory getAmountFactory(MonetaryAmountFactoryQuery query);

public static Collection<MonetaryAmountFactory> getAmountFactories
(MonetaryAmountFactoryQuery query);

public static boolean isAvailable(MonetaryAmountFactoryQuery query);

[...]
}

Hereby

* getAmountFactory(Class) provides access to the corresponding MonetaryAmountFactory<T>
matching the amount type T.

 additionally a default MonetaryAmountFactory can be accessed, by calling getDefaultAmountFactory().
Hereby the default type is the provided amount class of the MonetaryAmountFactory with the highest
priority (determined by the Bootstrap implementation). This can be overridden by adding a
javamoney.properties file to the classpath as follows:

Jjavamoney.properties Configuration File
Defaults for java money

javax.money.defaults.amount.class=my.fully.qualified.MonetaryAmountType

* getAmountTypes() returns all amount implementation classes currently available.

» getAmountFactories() returns all amount factories currently available. Compared to calling
getAmountTypes() the factories provide also minimal and maximal monetary amount meta-data,
which also includes corresponding attributes describing the numeric capabilities supported.

* getAmountFactory(MonetaryAmountFactoryQuery query) allow to access a MonetaryAmountFactory that
best covers the given MonetaryAmountFactoryQuery.

* Finally getAmountFactories(MonetaryAmountFactoryQuery query) allow to query multiple instances of
MonetaryAmountFactory using a MonetaryAmountFactoryQuery.

31

Implementations of this JSR must at least provide one implementation of
MonetaryAmountFactoryProviderSpi ~ with a query policy equal to
MonetaryAmountFactoryProviderSpi.QueryInclusionPolicy.ALWAYS* Refer to section
[MonetaryAmountFactoryProviderSpi] for more details.

IMPORTANT

Accessing Roundings

Rounding is modeled by implementations of MonetaryRounding, which extends MonetaryOperator but also
provides rounding meta-data, modeled as RoundingContext. This is very useful since in the financial
area beside mathematical roundings, also non standard variants with arbitrary rules and constraints
are quite common in the financial area.

This JSR provides several roundings accessible from the javax.money.Monetary singleton based on:

1. a target CurrencyUnit. By default the rounding is based on the currency’s default fraction units (see
CurrencyUnit.getDefaultFractionUnits()).

2. an explicit (unique) rounding id that must be known (and documented) by a RoundingProviderSpi
implementation.

3. each implementation should at least enable accessing mathematical rounding, supporting
a. the maximal precision (int)
b. the target scale (int)

c. the java.math.RoundingMode, providing a definition of the required mathematical rounding. If not
defined HALF_EVEN rounding mode should be used as a default.

4. Using a RoundingContext, which can be configured with any kind of attributes. Also other use cases
can be supported, e.g. it could be possible to access special cash rounding, which may be different
than the default currency rounding (e.g. for CHF/Swiss Francs).

The Monetary singleton provides access to MonetaryRounding instances as follows:

32

Monetary Singleton (Rounding related methods)

public final class Monetary{
private Monetary(){}

public static MonetaryOperator getDefaultRounding();

public static MonetaryRounding getRounding(CurrencyUnit currencyUnit, String...
providers);

public static MonetaryRounding getRounding(String roundingName, String... providers);

public static MonetaryOperator getRounding(RoundingQuery query);

public static Collection<MonetaryRounding> getRoundings(RoundingQuery roundingQuery);

public static boolean isRoundingAvailable(String roundingName, String... providers);

public static boolean isRoundingAvailable(RoundingQuery query);

public static Set<String> getRoundingNames(String... providers);

public static Set<String> getRoundingProviderNames();

public static List<String> getDefaultRoundingProviderChain();

Hereby

33

getDefaultRounding() returns a general rounding instance that is dynamically implementing the
default currency rounding, as required by the currency passed, when called.

getRounding(CurrencyUnit, String) returns the default rounding for the given CurrencyUnit.
getRounding(String, String) returns an explicit named rounding.

getRoundingNames(String) provides access to the rounding names of the currently registered
roundings for the given providers.

isRoundingAvailable allows to determine if the query function return corresponding roundings.

All access methods above also allow to pass an ellipse operator of provider names. If not set
explicitly the default providers and ordering as defined by getDefaultRoundingProviderNames() must
be used. Hereby

o if only a single valued result is returned (MonetaryRounding, boolean), the provider chain is
evaluated until the first provider returns true or a non-null CurrencyUnit instance.

o in case of multi valued results all values returned by the providers are added to the result
collection (List, Set, Collection).

getRoundingProviderNames() provide the names of all currently registered RoundingProviderSpi
instances. Refer to section [RoundingProviderSpi] for more details.

getDefaultRoundingProviderNames() provide the names of the current default RoundingProviderSpi
providers in the corresponding chain order.

* getRounding(RoundingQuery) offers maximal flexibility for accessing roundings. It is only restricted
by the capabilities provided by the registered RoundingProviderSpi instances. Refer to section
[RoundingProviderSpi] for more details.

* getRoundings(RoundingQuery) offers maximal flexibility for accessing roundings, but allows accessing
multiple roundings.

The RoundingQuery for accessing a rounding from the Monetary singleton is modeled as follows:

RoundingQuery Value Type
public final class RoundingQuery extends AbstractQuery<RoundingQuery>{

public String getRoundingName();
public int getScale();
public CurrencyUnit getCurrencyUnit();

public RoundingQueryBuilder toBuilder();

By querying MonetaryRounding instances with an instance of RoundingQuery we can model easily some
rather complex use cases:

1. Access cash rounding for a CurrencyUnit, which may be different from the default rounding. E.g. for
Swiss Francs the cash rounding will be in 5 minor unit steps: 1.00, 1.05, 1.10 etc. This can be
achieved by creating an instance of RoundingContext with currency unit and cashRounding=true
explicitly yet.

2. Access to historic roundings can be achieved by setting a CurrencyUnit and an (optional) target
LocalDate (or whatever time type is most appropriate).

3. by setting the rounding id to a non default value, custom roundings can be implemented, e.g. for
support of technical formats.

Instances of this value type can be created using an instance of RoundingQueryBuilder. So it would be
possible (if the registered provider supports this behaviour) to access special cash rounding, which
may be different than the default currency rounding (e.g. for CHF/Swiss Francs), as follows:

34

Example how a cash rounding could be accessed (not part of the API)

LocalDate localDate = ...;
MonetaryRounding rounding = Monetary.getRounding(

RoundingQueryBuilder.of() <1>
.setRoundingName("cashRounding") <>
.setCurrencyUnit("CHF") <3>
.set(localDate) <4>
.build()); <5>

@ Access a rounding by passing a RoundingQuery

@ Acquire a specific named rounding.

® Set the target currency unit (predefined attribute).
@ Access a rounding valid for the given LocalDate.

® Creates the new Roundi ngQuery instance.

Finally the default rounding provider chain can be configured within javamoney.properties added to
the classpath:

javamoney.properties Configuration of default currencies provider chain
Defaults for java money

javax.money.defaults.Monetary.roundingProviderChain=provider1,provider2,provider3

4.2.8. Additional Functional Support

Additionally to monetary operators and monetary queries access the the numeric part as well as to the
currency of an amount is modeled with corresponding functional interfaces similarly.

CurrencySupplier

The interface javax.money.CurrencySupplier is a functional interface similar to Supplier<CurrencyUnit>
as defined in Java 8), whose functional method is getCurrency():

35

Interface CurrencySupplier
// Java 8

public interface CurrencySupplier {
CurrencyUnit getCurrency();

}

// Java 7
public interface CurrencySupplier {
CurrencyUnit getCurrency();

}

Hereby
* There is no requirement that a distinct result be returned each time the supplier is invoked.

NumberSupplier

The interface javax.money.NumberSupplier is a functional interface similar to specialization of
Supplier<NumberValue> as defined in Java 8), whose functional method is getNumberValue():

Interface NumberSupplier
// Java 8

public interface NumberSupplier {
NumberValue getNumber();

}

// Java 7
public interface NumberSupplier {
NumberValue getNumber();

}

Hereby

* There is no requirement that a distinct result must be returned each time the supplier is invoked.

4.2.9. Exception Types
The core API defines basically two exception types:

javax.money.MonetaryException

javax.money.MonetaryException is a runtime exception, which models the base exception for all other
exceptions. Any monetary exception added by an implementation must inherit from this class.

36

javax.money.UnknownCurrencyException

This runtime exception extends MonetaryException and is thrown whenever

* a currency code given cannot be resolved into a corresponding CurrencyUnit instance. The
invalid currency code passed is provided as a property on the exception as public String
getCurrencyCode();.

* a Locale given cannot be resolved into a corresponding CurrencyUnit instance. The unresolvable
Locale passed is provided as a property on the exception as public Locale getlocale();.

4.3. Currency Conversion

Currency conversion is an important aspect when dealing with monetary amounts. Unfortunately
currency conversion has a great variety of how it is implemented. Whereas a web shop may base its
logic on an API provided by a financial backend, that makes explicit conversion even not necessary, in
the financial industry, conversion is a very complex concern, since

» conversion may be different based on the use case

* conversion may be different based on the provider of the exchange rates
* conversion rates may vary based on the amount to be converted

* conversion rates may vary based on contract or business unit

* conversion rates are different related to the target date/time

Hereby this list is not complete. Different companies may have further requirements and aspects to be
considered. The API focuses on the common aspects of currency conversion such as:

* a source and a target currency
* an exchange rate

* providing conversion providers and having the possibiity to address and combine providers as
needed.

Hereby currency conversion or the access of exchange rates can be parametrized with additional
meta-data, similar to other models defined by this JSR. This allows to enrich the basic model with
whatever complexity is required, hereby keeping the basic model as simple as possible.

4.3.1. Accessing Monetary Conversions

Similar to other areas of this JSR a MonetaryConversions singleoton is defined, which provides access to
all different aspects related to currency conversion, such as

* access to providers that offer conversion rates, modelled as ExchangeRate.

37

* access to conversion operators (CurrencyConversion extends MonetaryOperator), that can be used
with any MonetaryAmount instances.

* access to further information about the providers currently available.

The following sections give an overview about the functionality in more detail. Similar to other
singletons also MonetaryConversions is backed up by a MonetaryConversionsSingletonSpi SPI to allow
customized (e.g. contextual) implementation of the functionality defined. Refer to the Money and
Currency SPI section in this document for more details.

4.3.2. Converting Amounts

Basically converting of amounts is modelled by the CurrencyConversion interface which extends
MonetaryOperator, hereby adding meta-data support, modelled by ConversionContext. Hereby a
conversion is always bound to a specific terminating (target) currency. So basically a
MonetaryAmount can simply be converted by passing a CurrencyConversion to the amount’s
with(MonetaryOperator) method:

Usage Sample Currency Conversion
MonetaryAmount amount = ...;

// Get a default conversion to Swiss Franc
CurrencyConversion conversion = MonetaryConversions.getConversion("CHF");

// Convert the amount
MonetaryAmount amount2 = amount.with(conversion);

Using a fluent API style this can be written even shorter as:
MonetaryAmount amount2 = amount.with(MonetaryConversions.getConversion("CHF"));

A CurrencyConversion instance hereby also allows to extract the concrete ExchangeRate applied. This
allows further pass the ExchangeRate instance to any subsequent logic.

Currency Conversion, accessing exchange rates
CurrencyConversion conversion = MonetaryConversions.getConversion("CHF");

MonetaryAmount amount = ...;
ExchangeRate rate = conversion.getExchangeRate(amount);

Nevertheless for accessing ExchangeRate instances an ExchangeRateProvider is much more effective. It
can be accessed from the MonetaryConversions singletons as well as from a CurrencyConversion.

38

4.

3.3. Exchange Rates and Rate Providers

Exchange Rates

The ExchangeRate models the details of a conversion applied:

the base and terminating (target) CurrencyUnit.

the conversion factor used [Note that the conversion rate can be dependent on the MonetaryAmount
passed.], modeled as NumberValue.

additional information if the rate is derived, meaning built up the result of rate chain. If a rate is
derived getExchangeRateChain() returns the rate chain that is used to derive the given (final)
exchange rate.

a ConversionContext, which can contain arbitrary additional information about the provider that
issued the rate and arbitrary further aspects concerning the rate/conversion.

Summarizing an ExchangeRate is modelled as follows:

Interface ExchangeRate

public interface ExchangeRate extends CurrencySupplier{

ConversionContext getContext();
CurrencyUnit getBaseCurrency();
CurrencyUnit getCurrency();

NumberValue getFactor();

// Support for chained rates
List<ExchangeRate> getExchangeRateChain();
boolean isDerived();

Hereby

39

getBaseCurrency(), getCurrency(), getFactor() model basically the mapping from the base
currency to the target currency.

isDerived() allows to check if the mapping in fact is backed up by a derived mapping, e.g. a
triangular rate chain.

getExchangeRateChain() return the full rate chain. In case of a non derived rate, this chain must
contain only the single rate itself. In case of triangular rate the chain contains all contained
subrates.

the ConversionContext accessible from getContext() allows to store additional meta data (refer also
to Meta-Data Contexts and Query Models for further details) about the rate instance, such as

- the rate’s provider
o the rate’s LocalDateTime or ZonedDateTime
o any other data that may be relevant

* each instance of rate finally can easily be converted into an according ExchangeRate.Builder
instance, so adaptations/changes on existing rates can be done easily.

Implementations of ExchangeRate

1. must implement equals/hashCode, hereby it is recommended considering
a. its base and term CurrencyUnit
b. its conversion factor
c. its ConversionContext

2. must be comparable.

3. must be serializable.

4. should be immutable and thread safe.

5. should be implemented as value types, with a fluent Builder pattern.

Exchange Rate Providers

We have seen in the previous section that an ExchangeRate can be obtained from a CurrencyConversion
or from its backing ExchangeRateProvider. Such a provider allows

* to access ExchangeRate instances, providing a base and a terminating (target) currency.
* to access CurrencyConversion instances, providing a terminating (target) currency.

Summarizing an ExchangeRateProvider is modelled as follows:

40

Interface ExchangeRateProvider

// Java 8
public interface ExchangeRateProvider{
ProviderContext getContext();

boolean isAvailable(ConversionQuery conversionQuery);
ExchangeRate getExchangeRate(ConversionQuery conversionQuery);
CurrencyConversion getCurrencyConversion(ConversionQuery conversionQuery);

// modelled as default methods in Java 8

boolean isAvailable(CurrencyUnit base, CurrencyUnit term);

boolean isAvailable(String baseCode, String termCode);

ExchangeRate getExchangeRate(CurrencyUnit base, CurrencyUnit term);
ExchangeRate getExchangeRate(String baseCode, String termCode);
CurrencyConversion getCurrencyConversion(CurrencyUnit term);
CurrencyConversion getCurrencyConversion(String termCode);
ExchangeRate getReversed(ExchangeRate rate);

Hereby

* the ProviderContext allows to provide additional provider meta-data, including the (required and
unique) provider name.

* the isAvailable methods allow to check for availability of conversion rates from this a provider
instance.

* the getExchangeRate methods allow to access a concrete conversion rate.
* getReversed can be called to reverse an exchange rate (NOTE: rates can, but must not be reversible).

¢ the getCurrencyConversion methods allow to access a CurrencyConversion that is internally backed up
by the given rate provider instance.

Conversion Query and Conversion Context

The API allows additionally to pass a ConversionQuery, which allow to pass any additional
attributes/parameters that may be required by a concrete ExchangeRateProvider instance. This allows to
support arbitrary complex use cases, as an example [This example is completely arbitrary.] an
implementation require/allow to pass

* the target amount
* a customer id

* a contract id

41

* a fallback strategy
¢ a deferred rate should be obtained

All these parameters then can be defined as part of a ConversionQuery. With such a query any kind of
additional parameters can be passed to the rate providers used to evaluate the required ExchangeRate.
A ConversionQuery then can be used to parametrize the Currency Conversion as well as an
[ExchangeRateProvider] instance acquired:

Usage Sample for configuring of a Currency Conversion / ExchangeRate (Provider)

ConversionQuery query = ConversionQueryBuilder.of()
.setRateType(RateType.DEFERRED).
.set("customerID", 1234)

.set("contractID", "213453-GFDT-02")
.set(FallbackStragey.PROVIDER)
.set(amount)

.setTermCurrency("CHF")

.build();

// Access a conversion...
CurrencyConversion conversion = MonetaryConversions.getConversion(query);

// ... or access a rate provider.
ExchangeRateProvider prov = MonetaryConversions.getExchangeRateProvider();
CurrencyConversion conversion = prov.getCurrencyConversion(query);

// for a rate, we need also a base currency
query = query.toBuilder().setBaseCurrency("USD").build();
ExchangeRate rate = prov.getExchangeRate(query);

Important to understand is that its the responsibility of the wused
ExchangeRateProvider implementation to interpret the attributes passed within a
ConversionQuery. Unknown parameters should simply be ignored, since a
provider can be used in a provider chain (explained in the next section).

IMPORTANT

4.3.4. ExchangeRateProvider Chains

Reading the previous sections one might ask, how multiple providers can be used or how an individual
rate provider can be accessed. In fact all the examples seen so far rely on the default provider chain
that can be accessed by calling MonetaryConversions.getDefaultProviderChain(). Hereby the chain
contains an ordered list of provider names, which correspond to the provider names that identify each
registered ExchangeRateProvider uniquely. The provider name is defined as a mandatory attribute on
the ProviderContext, accessible from each ExchangeRateProvider from
ExchangeRateProvider.getContext().

42

E.g. the output of the European Central Bank (ECB) provider context, shipped with the Moneta reference
implementation, prints out the following when accessing toString():

ProviderContext [attributes={PROVIDER=Compound: ECB}]

Usage Sample Accessing the default Exchange Rate Provider Chain IDs

// Accessing the default provider chain, configurable in javamoney.properties
List<String> providerIds = MonetaryConversions.getDefaultProviderChain();

As mentioned accessing a currency conversion or rate provider, without passing the providers
required returns the default provider chain. So the following two statements are equivalent, given the
default chain is "ECB", "IMF", "ECB-HIST":

// equivlent calls when the default provider chain equals to
// {"ECB", "IMF", "ECB-HIST"}
CurrencyConversion conversion
CurrencyConversion conversion
"ECB-HIST");

MonetaryConversions.getConversion("CHF");
MonetaryConversions.getConversion("CHF", "ECB", "IMF",

Within a provider chain, the first provider that returns a non-null result determines the final value of
the method call, e.g. the exchange rate to be used to calculate the currency conversion. By passing the
chain or providers to be used different usage scenarios can be easily separated/supported, but still
keeping the API simple for the simple use cases.

The default rate provider chain can be configured within javamoney.properties added to the classpath:
Jjavamoney.properties Configuration of default conversion provider chain
Defaults for java money

javax.money.defaults.MonetaryConversions.providerChain=provider1,provider2,provider3

4.4. Money and Currency Formatting API

The formatting is modelled with a quite simple, but very flexible design. It allows the access of formats
based on java.util.locale, similarly to the functionality in java.text, but offers flexibility that goes
beyond the JDKs formatting packages. In contrary to the JDK formatter the formatter defined by this
API are thread-safe and arbitrarily expandable.

The entry point for the JSR formatter is the MonetaryFormats singleton, which provides access to
different formatter API artifacts. The following section describes the relevant artifacts in more detail.

43

4.4.1. Formatting of Monetary Amounts

As defined in [RequirementsFormatting | Requirements], this JSR must provide an API for providing
flexible and expandable formatting capabilities for MonetaryAmount instances. Though formatting is a
very complex field the JSR’s expert group has identified a minimal set of functionality, that provides an
API simple to use, but still being flexible to accommodate a wide range of usage scenarios. Aspects to
be considered are:

1. Amount values can be rounded for display by applying any MonetaryOperator before
formatting/printing.

2. Similarly amount values can be operated after parsing by applying any MonetaryOperator. This is the
reciprocal operation to the display rounding above.

3. It is possible to define number grouping with flexible group sizes and different grouping characters.
as for example needed to format INR [INR 123456000.21 is formatted as INR 12,34,56,000.21].

4. The currency part of an amount can be formatted in different ways:
a. as currency code, e.g. USD
b. as numeric currency code, if such a code is defined.
c. as a (localized) currency symbol, e.g. $
d. as a (localized) currency name, e.g. Schweizer Franken

e. the currency part is omitted from the formatter’s output (e.g. because its printed out somewhere
else already).

5. The overall formatting and parsing pattern can be defined similar to java.text.DecimalFormat, but
also completely different usage scenarios are possible.

Fortunately all this scenarios can be covered by implementing instances of the MonetaryAmountFormat
interface as shown below:

Interface MonetaryAmountFormat

public interface MonetaryAmountFormat extends MonetaryQuery<String>{
String format(MonetaryAmount<?> amount);
void print(Appendable appendable, MonetaryAmount<?> amount) throws IOException;
MonetaryAmount<?> parse(CharSequence text) throws ParseException;
AmountFormatContext getContext();

}

Hereby

* an amount can be formatted to a String or an Appendable, or parsed from a String.

44

* The meta-data of the format are provided by an immutable AmountFormatContext value type. Refer to
Meta-Data Contexts and Query Models for further details on meta-data modeling.

The power of the API now comes with the capability to pass instances of AmountFormatQuery to the
singleton for accessing MonetaryAmountFormat instances. Similar to other queries defined by this JSR it is
possible to pass any additional parameters that are necessary to configure the concrete formatting to
be returned. Summarizing: * The AmountFormatQuery defines the parameters and attributes that
configure a format. Hereby a format can be identified by name or configured on the fly. The effective
behaviour depends on the concrete functionality provided by the (possibly several) registered
instances of type Adding Amount Formats. * The Adding Amount Formats implementation finally must
interpret the attributes in AmountFormatContext and create an according formatter instance.

With that simple approach, we can extend our formatting capabilities easily as needed. Nevertheless
the basic API for common use cases still is simple, since we can also access formatting just using a
Locale, similarly to javax.text.DecimalFormat.getCurrencyInstance(Locale).

Implementations of this JSR must provide according default formatter for each
Locale that is also available from

IMPORTANT javax.text.DecimalFormat.getCurrencyInstance(Locale). Hereby it is not required
that the format is exact the same, e.g. formatting for Indian Rupees is expected to
have different grouping sizes.

Contrary to the formatter in javax.text implementations of this interface must be thread-safe.

Examples

Given the API above, acquiring a MonetaryAmountFormat instance is simple, the most simple usage is
just accessing one using a Locale:

Usage Example Formatting a MonetaryAmount

MonetaryAmountFactory<?> f = Monetary.getDefaultAmountFactory();
MonetaryAmount amount = f.setCurrency("CHF").setNumber(12.50).create();

MonetaryAmountFormat format =
MonetaryAmountFormats.getAmountFormat(Locale.GERMANY);

// format the given amount
String formatted = format.format(amount); // result: CHF 12,50

// create another amount based on the given amount
amount = f.toBuilder().setCurrency("INR").setNumber(123456789101112.123456).create();
formatted = format.format(amount); // result: INR 123.456.789.101.112,12

For Indian Rupees (INR) it would be, of course, better using the Indian number format and different
grouping sizes, for this we could configure an AmountFormatContext that implements this behaviour as
illustrated below:

45

Usage Example (continued) Formatting a MonetaryAmount

AmountFormatQuery query = AmountFormatQueryBuilder.of(new Locale("","INR"))
.set("groupSizes", new int[]{3,2]).build();
MonetaryAmountFormat format = MonetaryAmountFormats.getAmountFormat(query);

MonetaryAmount amount =
Monetary.getDefaultAmountFactory()
.setCurrency("INR")
.setNumber (123456789101112.123456) .create();

String formatted = format.format(amount);
// result: INR 12,34,56,78,91,01,112.12

4.4.2. Configuring a Monetary Amount Formatter

As mentioned before a MonetaryAmountFormat can be configured using an AmountFormatQuery with
arbitrary attributes, so also very complex and historic formats can be supported easily. Instances of
AmountFormatQuery can be created using an AmountFormatQueryBuilder:

Class AmountFormatQuery

public final class AmountFormatQuery extends AbstractQuery{
private AmountFormatQuery(AmountFormatQueryBuilder builder);

public String getFormatName();

public Locale getlocale();
public AmountFormatQueryBuilder toBuilder();

}

public final class AmountFormatQueryBuilder extends AbstractQueryBuilder
<AmountFormatQueryBuilder,AmountFormatQuery>{

public static AmountFormatQueryBuilder create(String formatName);
public static AmountFormatQueryBuilder create(Locale locale);

public AmountFormatQueryBuilder setMonetaryQuery(MonetaryQuery monetaryQuery);

public AmountFormatQuery build();

Hereby the above listing illustrates quite well, what are the minimal properties that define an
AmountFormatQuery:

46

* a format name, by default "default".
e alocale

» of course, additional parameters can be added as needed, such as output and input patterns, color
or style settings, MonetaryAmountFactory instance to be used for creating amounts on parsing etc.

The configuration active for a concrete MonetaryAmountFormat is accessible also from the
AmountFormatContext, which can obtained by calling MonetaryAmountFormat.getContext().

4.4.3. MonetaryFormats Accessor Singleton

The class javax.money.format.MonetaryFormats models a singleton accessor, which is, similarly to other
singleton in this JSR, backed up by an SPI instance of Accessing Monetary Amount Formats. The SPI
implementation is responsible for collecting and managing registered instances of
MonetaryAmountFormatProviderSpi providing them based on the AmountFormatQuery passed. Such a query
can contain

e alocale, or
¢ a format name

* the target providers that should be selected to handle the query to create/provide a
MonetaryAmountFormat instance.

* any other attributes as defined by the provider that should handle the query, refer to the section
Meta-Data Contexts and Query Models for more details.

47

Interface MonetaryFormatsSingletonSpi

public interface MonetaryFormatsSingletonSpi{
Collection<MonetaryAmountFormat> getAmountFormats(AmountFormatQuery query);
<1>
Set<lLocale> getAvailablelocales(String... providers);
<2>
Set<String> getFormatNames(String... providers);
<3>
Set<String> getProviderNames();
<4>
List<String> geDefaultProviderChain();
<5>

// The following methods are modelled as default methods in Java 8
MonetaryAmountFormat getAmountFormat(Locale locale, String... providers){...} <6>
MonetaryAmountFormat getAmountFormat(Locale locale, String... providers){...} <6>

MonetaryAmountFormat getAmountFormat(String name, String... providers); <6>
boolean isAvailable(Locale locale, String... providers){...} <7>
boolean isAvailable(AmountFormatQuery formatQuery){...} <7>

@® Main method called for accessing formats.

@ Collect all locales available from the given providers. If no provider IDs are passed the default
provider chain is used.

® Get the available format names for the given providers. If no provider IDs are passed the default
provider chain is used.

@ Access all registered provider’s ids.
® Access the ids of the default provider chain, in the ordering as executing.

®In java 8 these methods are provided as default methods delegating to
getAmountFormats(AmountFormatQuery).

@ In java 8 these methods are default methods trying to access a formatting calling

getAmountFormats(AmountFormatQuery).

Similar to other singletons of this JSR overriding the Accessing Monetary Amount Formats allows to add
contextual behaviour in EE or multi-tenancy runtime environment. Refer to Money and Currency SPI
for further details.

The MonetaryFormats singleton finally defines the following access methods, very similar to the
MonetaryFOrmatsSingletonSpi:

48

MonetaryFormats Singleton

public final class MonetaryFormats{
private MonetaryFormats(){}

public
public
public
.
public
-
public
public
query);
public
public
public
public
public
public

{.
{.

static
static
static

static

static
static

static
static
static
static
static
static

MonetaryAmountFormat getAmountFormat(Locale locale);
MonetaryAmountFormat getAmountFormat(AmountFormatContext context);
MonetaryAmountFormat getAmountFormat(Locale locale, String... providers)

MonetaryAmountFormat getAmountFormat(Locale locale, String... providers)

MonetaryAmountFormat getAmountFormat(String name, String... providers);
Collection<MonetaryAmountFormat> getAmountFormats(AmountFormatQuery

boolean isAvailable(Locale locale, String... providers){...}
boolean isAvailable(AmountFormatQuery formatQuery){...}
Set<lLocale> getAvailablelocales(String... providers);
Set<String> getFormatNames(String... providers);

Set<String> getFormatProviderNames();

List<String> geDefaultFormatProviderChain();

The design chosen ist so flexible that every kind of formatting related to monetary amounts can be
easily mapped. The code below illustrates a hypothetical, but more complex example:

Advanced setup of a AmountFormatQuery

AmountFormatQuery query = new AmountFormatQueryBuilder.of("htmlFormat")<1>

.set("title", "MyTitle") <>
.set("negativeStyle", ".negNumber") <3>
.set("positiveStyle", ".posNumber+) <3>
.set("styleClass", "styledAmount") <4>
.build(); <5h>

@D Access a format with name htmlFormat

@ Sets the format’s display name

® Sets the CSS style classes to be used for positive and negative values.

@ Sets the overall default style class.

@ Creates a new instance.

NOTE

The example above is arbitrarily chosen. This specification does not require this
behaviour to be available, or be implemented as shown before.

Similar to currency conversion the default format provider chain can be configured within
javamoney.properties added to the classpath:

49

javamoney.properties Configuration of default format provider chain
Defaults for java money

javax.money.defaults.MonetaryFormats.providerChain=provider1,provider2,provider3

4.4.4. Formatting Exceptions

Jjavax.money.format.MonetaryParseException

This runtime exception extends MonetaryException and is thrown whenever a MonetaryAmount could
not be parsed successfully. It provides hereby additional info:

* the original input CharSequence passed to the MonetaryAmountFormat.

» the error index within the input String, where parsing failed unrecoverable.

4.5. Money and Currency SPI

JSR 354 defines a complete API and provides a default reference implementation. An implementation
of this API must provide several implementation services, called the SPI, to provide the effective
functionality. These services must be registered to the JSR’s Bootstrap mechanism. The Bootstrap
singleton internally loads an instance of ServiceProvider using java.util.Serviceloader. The default
loader used hereby relies on java.util.Serviceloader to load the implementation services, so be
default the JSR behaves like a normal SE based JSR. However by registering alternate implementations
of ServiceProvider the component loading mechanism can be replaced completely, e.g. with a
mechanism that also tries to get access a CDI BeanManager from JNDI thus enabling to register SPI
implementations as CDI managed beans.

All SPIs are contained in the package javax.money.spi. Summarizing the following SPIs are available:

* CurrencyProviderSpi (mandatory, multiple service chain) - provides instances of CurrencyUnit,
accessible from Monetary singleton.

* MonetaryAmountsSingletonSpi (mandatory, only one instance selected by priority) - manages
instances of MonetaryAmountFactoryProviderSpi, which create instances of MonetaryAmountFactory, that
are being accessible from the Monetary singleton.

* MonetaryAmountFactoryProviderSpi (mandatory, multiple service chain) - is responsible for
registering and providing instances of MonetaryAmountFactory.

* MonetaryAmountsSingletonQuerySpi (mandatory, only one instance selected by priority) - this SPI
allows to override/define the behaviour of Monetary.queryAmountType(MonetaryContext).

* RoundingProviderSpi (mandatory, multiple service chain) - provides instances of MonetaryOperator,
for being accessible from Monetary.

50

MonetaryRoundingsSingletonSpi controls the loading of RoundingProviderSpi instances.

MonetaryConversionSingletonSpi (mandatory, only one instance selected by priority) - manages
instances of ExchangeRateProvider, for being accessible by the Monetary singleton and also is
responsible for providing the composite provider instances as to be returned by the conversion API.

ExchangeRateProvider (mandatory, multiple instances selected by API) - this class is also part of the
API, but also models the huge part of the SPI required for currency conversion.

MonetaryAmountFormatSingletonSpi (mandatory, only one instance selected by priority) - provides the
backing bean for the MonetaryFormats singleton, manages instances of
MonetaryAmountFormatProviderSpi.

MonetaryAmountFormatProviderSpi (mandatory, multiple service chain) - provides instances of
MonetaryAmountFormat, for being accessible by+ MonetaryFormats.getAmountFormat(<?>)+.

ServiceProvider (optional, only one instance selected by priority), defines the singleton accessor for
loading SPI components used by the Bootstrap class.

How the implementations must be registered depends on the ServiceProvider that is loaded by the
Bootstrap implementation. The default mechanism is based on the java.util.ServicelLoader class. By
ordering the registered instances of some type along the priority (the most significant first), it is also
possible to override partial aspects, as the first a non null result returned by a provider is taken as
result of a call. The prioritization of components is implicitly defined by the order of the
components returned by the ServiceProvider SPI implementation.

SPI interfaces called XXXSingletonSpi are generally loaded once during early boot of the
JSR and are subsequently managed as static references within the singleton accessors.
NOTE This may look as a constraint, but in fact you just have to ensure to delegate component
loading and management to the Bootstrap mechanism. You can refer to the Moneta
reference implementation for further details, which exactly implements this behaviour.

4.5.1. Core SPI

Accessing Currencies

Currencies are accessed from the [Monetary] singleton. This singleton is backed up by an
implementation of MonetaryCurrenciesSingletonSpi, which must be registered to the The Bootstrapping
Mechanism:

51

Interface MonetaryCurrenciesSingletonSpi

public interface MonetaryCurrenciesSingletonSpi {
List<String> getDefaultProviderChain();
Set<String> getProviderNames();
Set<CurrencyUnit> getCurrencies(CurrencyQuery query);

// The following methods are modelled as default methods in Java 8
CurrencyUnit getCurrency(String currencyCode, String... providers);
CurrencyUnit getCurrency(Locale country, String... providers);
Set<CurrencyUnit> getCurrencies(Locale locale, String... providers);
boolean isCurrencyAvailable(String code, String... providers);
boolean isCurrencyAvailable(Locale locale, String... providers);
Set<CurrencyUnit> getCurrencies(String... providers);

CurrencyUnit getCurrency(CurrencyQuery query);

Hereby
» Similar to other areas multiple instances of CurrencyProviderSpi can be registered.
» Each CurrencyProviderSpi instance is identified by its (unique) provider name.
* On access the required chain of CurrencyProviderSpi can be defined explicitly.

* If no provider chain is explicitly passed, the default provider chain as defined by
getDefaultProviderChain() is used.

* When accessing CurrencyUnit instances the first non null/not empty instances returned by a
provider are used as a result by default. Implementations of MonetaryCurrenciesSingletonSpi may
also add additional combination strategies by defining additional attributes that can be passed as
part of a CurrencyQuery passed.

* Basically it is sufficient for implementations to provide the getCurrencies(CurrencyQuery) method
for looking up currencies, since by default all other methods delegate to this method.

Implementations of this class should use the The Bootstrapping Mechanism suport to evaluate the
instances of CurrencyProviderSpi for a given runtime context.

Registering Currencies

By registering instances of javax.money.spi.CurrencyProviderSpi to the The Bootstrapping Mechanism
logic additional CurrencyUnit instances can be registered into the Monetary singleton:

52

Interface CurrencyProviderSpi

public interface CurrencyProviderSpi {
Set<CurrencyUnit> getCurrencies(CurrencyQuery query);

// Modelled as default methods in Java 8
String getProviderName();
boolean isCurrencyAvailable(CurrencyQuery query);

Hereby

* each provider must return a unique provider ID from getProviderName(). By default the provider’s
simple class name is used.

» with getCurrencies(CurrencyQuery) each provider can return the CurrencyUnit instances that are
valid as defined by the CurrencyQuery instance passed. Hereby a query can refer to a single currency
instance, or a more open query returning multiple instances. Additional parameters can be
supported as needed for the concrete use cases, e.g. historic or regional reference, namespace
schemas etc. If a provider cannot deliver any CurrencyUnit instances, an empty Set must be
returned.

* isCurrencyAvailable(CurrencyQuery) allows to check for any currencies being available. By default
this method calls getCurrencies(CurrencyQuery) and simply checks for an empty Set being returned.
Implementations may override this behaviour with a more efficient approach.

Registering Monetary Amount Factories

The javax.money.spi.MonetaryAmountFactoryProviderSpi<T> interface allows to create new instances of
MonetaryAmountFactory<T extends MonetaryAmount>. The signature looks as follows:

33

Interface MonetaryAmountFactoryProviderSpi

public interface MonetaryAmountFactoryProviderSpi<T extends MonetaryAmount> {
public static enum QueryInclusionPolicy {
ALWAYS,
DIRECT_REFERENCE_ONLY,
NEVER

}

(lass<T> getAmountType();

MonetaryContext getDefaultMonetaryContext();

default MonetaryContext geMaximalMonetaryContext(){...} // default: delegates to
getDefaultMonetaryContext()

default QueryInclusionPolicy getQueryInclusionPolicy(){...} // default:
QueryInclusionPolicy.ALWAYS

MonetaryAmountFactory<T> createMonetaryAmountFactory();

Hereby

* getAmountType() returns a new implementation of T which is returned by a MonetaryAmountFactory
created by an instance.

* The default MonetaryContext used can be determined by calling getDefaultMonetaryContext().
* The maximal supported MonetaryContext can be determined by calling getMaximalMonetaryContext().

* getQueryInclusionPolicy() defines if the given spi (and hence the corresponding MonetaryAmount
implementation type) is to be considered, when Monetary.queryAmountType(MonetaryContext) is
called:

o ALWAYS means that given instance should be considered always as a candidate. Nevertheless the
active implementation of MonetaryAmountSpi decides finally, which implementation type
(evaluated by calling getAmountType()) is returned as the result of such a query operation, based
on the flavors and capabilities declared by the MonetaryContext provided.

o DIRECT_REFERENCE_ONLY means that given instance should only be considered as a candidate, when
the target type requested matches the type returned by getAmountType()) .

o NEVER signals that the corresponding implementation type is considered not to be a valid return
type of a query operation. This is useful, e.g. for special amount types as decorators, which do not
provide their own numeric representations.

» createAmountFactory() finally creates a corresponding MonetaryAmountFactory factory.

54

Backing the Monetary Singleton (Amount related functionality)

Also the functionality of the Monetary accessor singleton is backed up by two SPI interfaces, called
javax.money.spi.MonetaryAmountsSingletonSpi and javax.money.spi.MonetaryAmountsSingletonQuerySpi.
Implementations of these interfaces should rely on the Bootstrap class to access the available instances
of MonetaryAmountFactory and MonetaryAmountFactoryProviderSpi respectively. Nevertheless being able to
register alternate implementations would allow to support more complex rules for a couple of
enterprise related functionality such as:

Implementing MonetaryAmountsSingletonSpi allows * to provide amount types (and related factories)
based on the current runtime context. * to configure the default amount type, as provided by
Monetary.getDefaultAmountType(), differently based on the current runtime context. * to configure
different defaults for the MonetaryContext used by the amount implementation types/factories.

The interface is defined as follows:

Interface MonetaryAmountsSingletonSpi

public interface MonetaryAmountsSingletonSpi{

<T extends MonetaryAmount> MonetaryAmountFactory<T> getAmountFactory(Class<T>
amountType);

(lass<? extends MonetaryAmount> getDefaultAmountType();

Collection<Class<? extends MonetaryAmount>> getAmountTypes();

// Modelled as default methods in Java 8
MonetaryAmountFactory<?> getDefaultAmountFactory();
Collection<MonetaryAmountFactory<?>> getAmountFactories();

Hereby

» getAmountFactory(Class<T>) should return an instance of MonetaryAmountFactory<T> that creates the
amount instances.

» getDefaultAmountType() returns the default implementation type created by the factory returned
from getDefaultAmountFactory() for the current runtime context.

* getAmountTypes() should return a collection of available implementation types for the current
runtime context.

» getDefaultAmountFactory() should return the default MonetaryAmountFactory for the current context.
Hereby an implementation must never return null. If no MonetaryAmountFactory instances are
registered, a MonetaryException should be thrown.

 Similar to getAmountTypes() the method getAmountFactories() returns all corresponding factories for
the current context.

55

Implementing MonetaryAmountsSingletonQuerySpi allows to provide alternate implementations of query
algorithm used within Monetary.queryAmountType(MonetaryContext) to evaluate the best matching
MonetaryAmount implementation given a MonetaryAmountFactoryQuery required. The interface is defined
as follows:

Interface MonetaryAmountsSingletonQuerySpi

public interface MonetaryAmountsSingletonQuerySpi{
Collection<MonetaryAmountFactory<? extends MonetaryAmount>> getAmountFactories
(MonetaryAmountFactoryQuery query);

// Modelled as default methods in Java 8

MonetaryAmountFactory getAmountFactory(MonetaryAmountFactoryQuery query);

(lass<? extends MonetaryAmount> getAmountType(MonetaryAmountFactoryQuery query)
Collection<(Class<? extends MonetaryAmount>> getAmountTypes(MonetaryAmountFactoryQuery

query)
boolean isAvailable(MonetaryAmountFactoryQuery query);

}

Hereby

* The only method to be overriden by default is getAmountFactories(MonetaryAmountFactoryQuery),
which evaluates a given MonetaryAmountFactoryQuery and returns the matching
MonetaryAmountFactory instances.

» Additionally there are a couple of default methods, which reflect the overall functionality provided
from the Monetary singleton. This gives implementation providers full control about the
functionality executed. Summarizing the methods implemented by default are:

o getAmountType(MonetaryAmountFactoryQuery) allows to evaluate a MonetaryAmount implementation
type that best covers the requirements defined by the passed MonetaryAmountFactoryQuery. If
multiple types match the query and are not resolvable, a MonetaryException should be thrown.

o getAmountFactory(MonetaryAmountFactoryQuery) matches
getAmountType(MonetaryAmountFactoryQuery), but returns the MonetaryAmountFactory instance
instead of the implementation type.

o getAmountTypes(MonetaryAmountFactoryQuery) allows to evaluate all MonetaryAmount
implementation types that covers the requirements defined by the passed
MonetaryAmountFactoryQuery.

o isAvailable(MonetaryAmountFactoryQuery) allows to determine (without any exception thrown) if
the given query returns any types/factories matching.

In general implementations of this interface should consider the following rules: . if the
MonetaryAmountFactoryQuery passed is explicitly requiring a concrete implementation type, a factory of
this type should be returned given the following conditions are met: .. the implementation is capable

36

to support the required maximal scale. .. the implementation is capable to support the required
maximal precision. . If no concrete type is given (passing the MonetaryAmount interface as type), the
following must be checked against each registered MonetaryAmountFactoryProviderSpi that are eligible
as a possible result type [This is the case, if the the value from
MonetaryAmountFactoryProviderSpi.getInclusionPolicy() does not equal to QueryInclusionPolicy.NEVER,
or QueryInclusionPolicy.DIRECT_REF_ONLY.] to be returned from a query: . is the
MonetaryAmountFactoryProviderSpi capable to support the required maximal scale (required scale
maxScale). .. is the MonetaryAmountFactoryProviderSpi capable to support the required maximal
precision (required precision maxPrecision, or precision==0/unlimited). . Additional
attributes to consider may be provided with the MonetaryAmountFactoryQuery provided, though this
specification does not define any further aspects in detail. . if all of the above is true, the according
amount types or amount factories should be returned.

If one of the conditions above fails a MonetaryException must be thrown [This makes sense, since
acquiring for a concrete type with invalid capabilities can be seen as a programming error, since the
default and maximal capabilities of a concrete type are accessible from the according implementation
factory.], or in case of Collection<?> being the method’s return type, an empty collection should be
returned. Also isAvailable(MonetaryAmountFactoryQuery) should never throw an exception, but return
false, if no matching MonetaryAmountFactoryProviderSpi could be determined.

Accessing Roundings

Since a monetary rounding is nothing else than a conversion from an unrounded amount to a rounded
amount, it is modeled as Monetary Operators. Nevertheless similar to other artifacts defined by this JSR
also roundings have metadata attached, so roundings extends Monetary Operators and additionally
provide access to the so called RoundingContext. MonetaryRounding instances are accessed from the
Monetary singleton. Similar to other singletons in this JSR the Monetarys singleton is backed up by an
instance of MonetaryRoundingsSingletonSpi, which allows to control the exact logic how registered
javax.money.spi.RoundingProviderSpi are managed:

57

Interface MonetaryRoundingsSingletonSpi

public interface MonetaryRoundingsSingletonSpi {
Collection<MonetaryRounding> getRoundings(RoundingQuery query);
MonetaryRounding getDefaultRounding();
Set<String> getRoundingNames(String... providers);
Set<String> getProviderNames();
List<String> getDefaultProviderChain();

// Modelled as default methods in Java 8

MonetaryRounding getRounding(RoundingQuery roundingQuery);

MonetaryRounding getRounding(CurrencyUnit currencyUnit, String... providers);
MonetaryRounding getRounding(String roundingName, String... providers);
MonetaryRounding getRounding(RoundingQuery query);

boolean isRoundingAvailable(RoundingQuery query);

boolean isRoundingAvailable(String roundingId, String... providers);

boolean isRoundingAvailable(CurrencyUnit currencyUnit, String... providers);

Similar to Currency Conversion a provider based service model is defined, meaning * multiple
rounding providers can be registered * when accessing MonetaryRounding instances the providers and
ordering of the provider chain that should handle the request can be explicitly defined. * if no chain
is passed explicitly a default provider chain is used, configurable within the javamoney.properties file
(see details later). * getRoundingNames allows to evaluate all explicitly named roundings available from a
given set of rounding providers. * getProviderNames() allows to evaluate the names of the registered
providers for the current context. * getDefaultProviderChain() return the ordered list of provider
names representing the default provider chain used, when no explicit rounding providers are
selected.

Basically all access methods by default delegate to getRoundings(RoundingQuery). Nevertheless all
possible access methods from the Monetary singleton are reflected in the SPI, so implementations have
full control of the logic executed.

Summarizing:
* MonetaryRounding instances can be accessed
> based on a CurrencyUnit, hereby returning the default rounding for a given currency.
o by its explicit (unique) roundingld.

> by passing a RoundingQuery allowing to add arbitrary additional parameters to configure the
rounding returned.

Registering Roundings

To register additional MonetaryRounding instances of RoundingProviderSpi must be implemented and

38

registered with the current The Bootstrapping Mechanism logic:

Interface RoundingProviderSpi

public interface RoundingProviderSpi {
MonetaryRounding getRounding(RoundingQuery query);
Set<String> getRoundingNames();

// Modelled as default method in Java 8
String getProviderName();
}

Hereby:

* getRounding(RoundingQuery) should return the matching rounding, given a RoundingQuery. If a
provider cannot provide the requested rounding, it should simply return null.

* getRoundingNames() returns all rounding names of the explicitly accessible roundings provided by
this rounding provider. It is within the responsibility of the implementation of
MonetaryRoundingsSingletonSpi to collect all rounding names contributed by providers to built the
full list of rounding names.

* Similar to other providers in this JSR each rounding provider must declare an explicit unique name
provided by the getProviderName() method.

Implementations of this JSR should also consider additional aspects:

1. When providing roundings targeting currencies, by default, if no explicit rounding is available for a
given CurrencyUnit, the digits returned from CurrencyUnit.getDefaultFractionDigits() and
RoundingMode.HALF_EVEN should be used, to create a rounding for a given CurrencyUnit.

2.Under Java SE (or where available) reference implementations should also provide default
arithmetic rounding instances, e.g. you can set a maximal scale of 1 and a RoundingMode as an
additional attribute.

3. Implementations should also support cash rounding. E.g. in Switzerland default rounding is done
for a scale of 2, whereas when paying in cash, the minor units must be divisible by 5, since 5 is the
smallest coin possible.

4. Finally it may also possible to provide historic roundings hereby considering an additional target
date/time, e.g. modelled as LocalDate.

4.5.2. Currency Conversion SPI

Accessing Currency Conversion Artifacts

Currency Conversion and rate providers mechanisms are provided by the MonetaryConversions

39

singleton (see Currency Conversion). This singleton is backed up by an implementation of
javax.money.spi.MonetaryConversionsSingletonSpi. Implementing this SPI provides full control about
the singleton’s effective behaviour. As a consequence the methods to be implemented basically match
the ones defined by the MonetaryConversions class:

Interface MonetaryConversionsSingletonSpi

public interface MonetaryConversionsSingletonSpi {
ExchangeRateProvider getExchangeRateProvider(ConversionQuery conversionQuery);
Collection<String> getProviderNames();
List<String> getDefaultProviderChain();

// Modelled as default methods in Java 8

ExchangeRateProvider getExchangeRateProvider(String... providers);
List<ExchangeRateProvider> getExchangeRateProviders(String... providers);

boolean isExchangeRateProviderAvailable(ConversionQuery conversionQuery);
CurrencyConversion getConversion(ConversionQuery conversionQuery);
CurrencyConversion getConversion(CurrencyUnit termCurrency, String... providers);
boolean isConversionAvailable(ConversionQuery conversionQuery);

boolean isConversionAvailable(CurrencyUnit termCurrency, String... providers);

Hereby
» multiple ExchangeRateProvider instances can be registered.

* each ExchangeRateProvider is identified by it's (unique) name, accessible from
ExchangeRateProvider.getContext().getProviderName().

* getProviderNames() allows to evaluate the names of the registered providers for the current context.

 getDefaultProviderChain() return the ordered list of provider names representing the default
provider chain used, when no explicit rounding providers are selected.

» ExchangeRateProvider instances can be accessed directly by passing the single provider name only as
the target chain definition, e.g. the provider XY can be accessed by calling
getExchangeRateProvider ("XY").

 the main artifact defining currency conversion is an ExchangeRateProvider. It provides ExchangeRate
instances defining the factor for converting an base amount to a target (aka terminating) amount.

* A CurrencyConversion basically is only an adapter to an ExchangeRateProvider, which allows simple
use of conversion as a MonetaryOperator.

» getExchangeRateProvider(String) allows to pass an ordered array of provider names. The names
identify the providers to be used allow to define a composite ExchangeRateProvider instance
(modeling a provider chain), that is able to answer requests based on multiple rate providers. As an

60

example calling ExchangeRateProvider prov = getExchangeRateProvider(ECB , IMF) should by
default return a composite ExchangeRateProvider instance, that internally first tries to resolve an
ExchangeRate requested, using the provider named "ECB". On success the "ECB" rate should be
returned. If this fails, to whatever reason, the provider with name "IMF" should be tried. If no
provider is able to return a valid result, a CurrencyConversionException must be thrown as defined in
the corresponding ExchangeRateProvider interface API documentation.

* If no explicit provider names are passed, the provider names and ordering as defined by
getDefaultProviderChain() have to be used.

* Implementations can easily provide alternate combination policies, but defining a corresponding
configuration flag that can be passed to a ConversionQuery and that must be interpreted by the
registered MonetaryConversionsSingletonSpi implementation, e.g.

ExchangeRateProvider rateProvider = getExchangeRateProvider(ConversionQueryBuilder.of()
.setProviders("XY", "foo")
.set(MyProviderCombiationPolicy.CHEAPEST_CONTRACT_FIRST)
.build());

Basically all access methods by default delegate to getExchangeRateProvider(ConversionQuery).
Nevertheless all possible access methods from the MonetaryConversions singleton are reflected in the
SPI, so implementations have full control of the logic executed.

Adding Currency Conversion Capabilities

Adding additional capabilities for currency conversion equals to implementing and registering classes
implementing the ExchangeRateProvider interface. The interface itself is part of the API and described
in [ExchangeRateProvider] and [ExchangeRate].

Implementations of the MonetaryConversionsSingletonSpi should use the current The Bootstrapping
Mechanism implementation to load right providers to be used for a given runtime context.

4.5.3. Formatting SPI

Accessing Monetary Amount Formats

Amount Formats are provided by the MonetaryFormats singleton (see [MonetaryFormats]). This
singleton is backed up by an implementation of javax.money.spi.MonetaryFormatsSingletonSpi.
Implementing this SPI provides full control about the singleton’s effective behaviour. As a consequence
the methods to be implemented basically match the ones defined by the MonetaryFormats class:

61

Interface MonetaryFormatsSingletonSpi

public interface MonetaryFormatsSingletonSpi {
Collection<MonetaryAmountFormat> getAmountFormats(AmountFormatQuery formatQuery);
Set<lLocale> getAvailablelocales(String... providers);
Set<String> getProviderNames();
List<String> getDefaultProviderChain();

// Modelled as default methods in Java 8

MonetaryAmountFormat getAmountFormat(Locale locale, String... providers);
MonetaryAmountFormat getAmountFormat(String formatName, String... providers);
MonetaryAmountFormat getAmountFormat(AmountFormatQuery formatQuery);

boolean isAvailable(AmountFormatQuery formatQuery);

boolean isAvailable(Locale locale, String... providers);

Hereby

* multiple MonetaryAmountFormat instances can be accessed, provided by registered instances of
MonetaryAmountFormatProviderSpi (see next section for details), whereby each provider spi is
identified by a unique provider name.

* getProviderNames() allows to evaluate the names of the registered providers for the current context.

» getDefaultProviderChain() return the ordered list of provider names representing the default
provider chain used, when no explicit rounding providers are selected.

* Instances of MonetaryAmountFormat can be identified and accessed using a format name.
* Instances of MonetaryAmountFormat can be accessed using a target Locale.

* When accessing MonetaryAmountFormat instances, the provider chain to be used can be defined
explicitly by passing the ordered provider names. If no explicit provider names are passed, the
provider names and ordering as defined by getDefaultProviderChain() have to be used.

» getAvailablelocales() allows to access the locales for which providers can return formats.

Basically all access methods by default delegate to getAmountFormat(AmountFormatQuery). Nevertheless
all possible access methods from the MonetaryFormats singleton are reflected in the SPI, so
implementations have full control of the logic executed.

Adding Amount Formats

The MonetaryFormats singleton delegates access to MonetaryAmountFormat instances to the registered
MonetaryFormatsSingletonSpi instance. The ladder class is responsible to manage the registered
instances of javax.money.spi.MonetaryAmountFormatProviderSpi to evaluate the correct results:

62

Interface MonetaryAmountFormatProviderSpi

public interface MonetaryAmountFormatProviderSpi {
Collection<MonetaryAmountFormat> getAmountFormats(AmountFormatQuery formatQuery);
Set<Locale> getAvailablelocales();
Set<String> getAvailableFormatNames();

// Modelled as default method in Java 8
String getProviderName();

Hereby * getProviderName() defines the (unique) provider name that can be used to reference this
format provider either explicitly when accessing format instances or when configuring the default
provider chain. * at least one instance of MonetaryAmountFormatProviderSpi must be registered to the
The Bootstrapping Mechanism logic. * getAmountFormats(AmountFormatQuery) returns the corresponding
MonetaryAmountFormat instances that match the given query. If the query doe not match, an empty
collection should be returned. * getAvailablelLocales() returns the locales for which instances of
MonetaryAmountFormat can be accessed. * getAvailableFormatNames() returns the explicit format names
for whcih instances of MonetaryAmountFormat can be accessed explicitly from a provider.

4.5.4. The Bootstrapping Mechanism

Overview

Basically the Bootstrap singleton class is used by all API components to access instances of the different
pluggable components of the Money API. Hereby also the Bootstrap class delegates the location and
loading of services to an implementation of a javax.money.spi.ServiceProvider, which implements the
detailed logic how services are located and managed. If no ServiceProvider is configured, a default
implementation is used that uses the java.util.Serviceloader to load and locate the instances.

Hereby the methods on the ServiceProvider, reflect the main functionality of the overall Bootstrap
class:

Class Bootstrap

public final class Bootstrap{
public static ServiceProvider init(ServiceProvider serviceProvider);
public static <T> Collection<T> getServices(Class<T> serviceType){...}
public static <T> T getService(Class<T> serviceType) {...}

}

Summarizing the Bootstrap singleton
* Tries to load an instance of ServiceProvider using java.util.Serviceloader.

« if no implementation was registered, it falls back to a default provider implementation, delegating

63

to java.util.Serviceloader and with no specific ordering/priorization mechanism.

* if exact one implementation is registered, this implementation is used for loading/accessing the
services required by the JSR 354 API. The implementation of Serviceloader hereby can also
implement a contextual service registry.

« if multiple implementations are registered, the implementation is not defined, Hereby a warning is
logged.

Service Provider

To use an alternate implementation of javax.money.spi.ServiceProvider it must be registered using the
java.util.Serviceloader. If no instance is registered, an instance of DefaultServiceProvider is loaded,
that relies on the java.util.Serviceloader.

Implementations of javax.money.spi.ServiceProvider must implement methods similar as available on
the Bootstrap singleton class:

Interface ServiceProvider

public interface ServiceProvider {
<T> Collection<T> getServices(Class<T> serviceType){...}

}

Hereby

« if a required service type can not be satisfied, an empty Collection should be returned.

Support for EE / CDI

We have seen that all the singleton accessors defined by this API can be replaced by customized
implementations. This allows also to adapt the behaviour in case your application runs in a EE/CDI
context. Given this all singleton backing implementations should delegate to the bootstrap component’s
ServiceProvider to evaluate the right instances of components given a special type. As a consequence
integration with Java EE can be done in multiple ways:

* you can override the singleton SPIs (MonetaryAmountsSingletonSpi, MonetarFormatsSingletonSpi,
MonetaryRoundingsSpi, MonetaryConversionsSingletonSpi, MonetaryFormatsSingletonSpi and
reimplement the mechanism how the different components are located within the current runtime
environment. Additionally you can filter or adapt the components accessible, e.g. based on tenant or
other contextual information. Overriding the singletons gives you full control. Nevertheless
overriding the SPIs requires more knowledge about the specification. Basically we recommended to
execute the TCK to identify locations, where your implementation may not be compliant with this
spec, when using this approach.

* Far more easy is to reuse the default singleton implementations, but exchange the ServiceProvider

64

used. This is basically quite easy:
o Implement an alternative instance of ServiceProvider.

o Register the instance using the JDK’s Serviceloader: add a file with the following content to your
(system) classpath under /META-INF/services/javax.money.spi.ServiceProvider:

Register alternate ServiceLoader in /META-INF/services/javax.money.spi.ServiceProvider

foo.bar.MyFooServiceProvider

This will delegate all requests for SPIs to your foo.bar.MyFooServiceProvider implementation. Within
this implementation you must: * fall back on SE mechanism, when EE/CDI is not available. * locate the
components as required * enable component precedence by ordering the instances found, e.g. you can
base your ordering on @Priority annotations on the classes loaded. Hereby the components with
higher priority must be returned first. They either have precedence in command chains or are
selected as final components to be used, e.g. for backing singleton beans.

An according example is implemented within the [JavaMoney] library, basically it looks similar to the
following code:

Outline of a CDI based ServiceLoader

(ServicePriority.NORM_PRIORITY + 1)
public class CDIServices implements ServiceProvider {

public <T> List<T> getServices(Class<T> serviceType) {
List<T> instances = new ArraylList<T>();
for(T t: Serviceloader.load(serviceType)){
instances.add(t);

}
for (T t : CDIContainer // backed up by CDI.current().getBeanManager();

.getInstances(serviceType)) {
instances.add(t);

}

Collections.sort(instances, PrioritySorter::sort);
return instances;

}

As a side effect you may add additional functionality to your setup:

* For example you may write a CDI portable extension to add the service that are registered using the
JDK ServicelLoader to your CDI runtime context.

65

* With CDI you can, of course, register your SPI implementations simply by implementing them as
CDI managed beans:

* You still can use the Serviceloader to register your beans.

Example writing a CurrencyProvider with CDI
(100)
public class MyCurrencyProvider implements CurrencyProvider {
private final Map<String, MyCurrency> currencies = new HashMap<>();

public MyCurrencyProvider(){
this.currencies.put("MSCU", new MyCurrency());
}

[...]
}

4.5.5. Adapting the Logging Backend

By default the JSR API logic uses java.util.logging (JUL) as logging backend. JUL allows to configure
additional or customized logging Handler instances, so alternate logging backends can be used easily,
by registering a forwarding Handler implementation for javax.money and configuring the Logger
instance to not delegating to its parent loggers.

The implementation that implements the API’s SPI may use a different logging approach.

5. Meta-Data Contexts and Query Models

5.1. Overview

The JSR uses a unified meta-data model to support more advanced use cases, which are not explicitly
specified. The main reason for not specifying these aspects is that they are highly use case and
organization dependent. In general there are two flavors of meta-data used throughout the JSR:

1. Contexts provide additional information on value types or services, such as currencies, amounts,
conversions or formats. Contexts are accessible directly from the corresponding value types, by
calling methods named getContext().

2. Queries models a generic and flexible way to configure/parametrize services for accessing
currencies, amounts, conversions or formats. Queries can be passed to the different accessor
singletons, and also are forwarded to the SPI implementations effectively providing the
data/services required.

66

Similarly there are two abstract base classes provided:

1. AbstractContext models an abstract base type, which is extended by all context implementations
within this JSR, such as MonetaryContext, CurrencyContext, RoundingContext, ProviderContext,
ConversionContext, AmountFormatContext.

2. AbstractQuery models an abstract base query, which is extended by all query implementations
within this JSR, such as MonetaryAmountFactoryQuery, CurrencyQuery, RoundingQuery,
ConversionQuery, AmountFormatQuery.

The following sections give further information on these concepts.

5.2. AbstractContext

The abstract class AbstractContext models a base type, which is extended by all context
implementations within this JSR, such as MonetaryContext, CurrencyContext, RoundingContext,
ProviderContext, ConversionContext, AmountFormatContext. Basically this class models a generic data
container, which provides a type safe mechanism for retrieving meta-data:

Class AbstractContext

public abstract class AbstractContext
implements Serializable{

public String getProviderName();

public Boolean getBoolean(String key);
public Integer getInt(String key);

public Long getlLong(String key);

public Float getFloat(String key);

public Double getDouble(String key);

public String getText(String key);

public <T> T get(Class<T> type);

public <T> T get(String key, Class<T> type);

public boolean isEmpty();

public Class<?> getType(String key);
public Set<String> getKeys(Class<?> type)

Hereby

* each context instance is related to a provider, that created the context, accessible from
getProviderName().

* additional attributes can be set, which models a type safe interface for adding properties, without

67

duplicating artifacts or creating non portable dependencies.
- identified by the attribute’s type.
- identified an arbitrary literal key

* the getXXX, get methods only return values of the resulting type is assignment compatible, so no
class cast exceptions do occur.

The classes extending this class hereby are thread-safe and immutable:
« javax.money.CurrencyContext
« javax.money.MonetaryContext
« javax.money.RoundingContext
« javax.money.conversion.ProviderContext
« javax.money.conversion.ConversionContext
« javax.money.format.AmountFormatContext
Creation of context instances is encapsulated using corresponding builder instances:
« javax.money.CurrencyContextBuilder
« javax.money.MonetaryContextBuilder
« javax.money.RoundingContextBuilder
« javax.money.conversion.ProviderContextBuilder
« javax.money.conversion.ConversionContextBuilder

« javax.money.format.AmountFormatContextBuilder

The builders hereby extend AbstractContestBuilder, discussed in the following section.

5.3. Abstract Class AbstractContextBuilder

The abstract class AbstractContextBuilder models a base builder type, which is extended by all context

builder implementations within this JSR, such as MonetaryContextBuilder, CurrencyContextBuilder,
RoundingContextBuilder, ProviderContextBuilder, ConversionContextBuilder,

AmountFormatContextBuilder. Basically this class models a generic builder, which provides a type safe
mechanism for storing arbitrary meta-data:

68

Class AbstractContextBuilder

public abstract class AbstractContextBuilder<B extends AbstractContextBuilder, C extends

AbstractContext>
implements Serializable{
public B setProviderName(String provider);

public
public
public
public
public
public
public
public

public
public
public

public

B

set(Object value);

<T> B set(T value, Class<? extends T> type);

B

set(String key, Object value);

<T> B set(String key, T value, Class<? extends T> type)

B

B
B
B

o

set(String key, int value);
set(String key, long value);
set(String key, float value);
set(String key, double value);

importContext(AbstractContext context, boolean overwriteDuplicates);
importContext(AbstractContext context);
removeAttributes(String... keys);

abstract C build();

5.4. Abstract Class AbstractQuery

The abstract class AbstractQuery models a base query type, which is extended by all query
implementations within this JSR, such as MonetaryAmountFactoryQuery, CurrencyQuery, RoundingQuery,
ConversionQuery, AmountFormatQuery. Basically this class models a generic query, which provides a type

safe mechanism for storing arbitrary query-data:

Abstract class AbstractQuery

public abstract class AbstractQuery extends AbstractContext{

protected AbstractQuery(AbstractQueryBuilder builder);

public List<String> getProviderNames();
public Class<?> getTargetType();

As seen above a query is basically the same as a context, thus inheriting all attribute container

functions. The query provides basic query properties:

* a query contains the provider names that defines the provider chain to be used for answering the

69

query. If not set the corresponding default provider chain must be used. The providers available are
accessible by calling getProviderNames() on the corresponding singleton accessors/SPI interfaces, e.g.
Monetary.getCurrencyProviderNames, Monetary.getRoundingProviderNames,
MonetaryConversions.getProviderNames etc.

* a query may defines a target type, hereby defining the target result type expected.

Hereby AbstractQuery inherits most of the functionality from the AbstractContext super class.

5.5. Abstract Class AbstractQueryBuilder

The abstract class AbstractQueryBuilder models a base builder type, which is extended by all query
builder implementations within this JSR, such as MonetaryAmountFactoryQueryBuilder,
CurrencyQueryBuilder, RoundingQueryBuilder, ConversionQueryBuilder, AmountFormatQueryBuilder.
Basically this class models a generic builder, which provides a type safe mechanism for storing
arbitrary query-data:

Abstract class AbstractQueryBuilder

public abstract class AbstractQueryBuilder<B extends javax.money.AbstractQueryBuilder, C
extends AbstractQuery>
extends AbstractContextBuilder<B,(>{

public B setProviderNames(String... providers);
public B setProviderNames(List<String> providers);
public B setTargetType(Class<?> type);

}

Similarly to AbstractQuery also here most of the functionality is inherited by the Abstract (lass
AbstractContextBuilder super class.

6. Implementation Recommendations

6.1. Overview

There are a couple of best practices in the area of financial applications and frameworks. This JSR does
not require most of them for the following reasons:

* The overall API design is similar to the Date/Time API introduced with JDK 8 (JSR-310), where
appropriate. E.g. TemporalAdjuster and MonetaryOperator model a similar concept for temporal and
for monetary amounts. Therefore the corresponding models in this JSR define similar
implementation constraints.

* More complex constraints would be difficult or impossible to ensure by a TCK, so they are defined

70

as recommendations.

* Finally there is always the possibility that no common ground can be found for the way some
functionality can be modelled generically across implementations. It would then be the
responsibility of the implementers to follow best, or at least de-facto, practice.

Nevertheless we think some practices are important and should be followed by implementations, so
we added the most relevant ones in the following sections.

6.2. Monetary Arithmetic

When dealing with monetary amounts the following aspects should be considered:

* Arithmetic operations should throw an ArithmeticException, if performing arithmetic operations
between amounts exceeds the capabilities of the numeric representation type used. Any implicit
truncating, that would lead to complete invalid and useless results, should be avoided, since it may
result to invalid results, which are very difficult to trace. This recommendation does not affect
internal rounding, as required by the internal numeric representation of a MonetaryAmount.

* When adding or subtracting amounts, best practice recommends to use parameters that are
instances of MonetaryAmount, hereby ensuring that both amounts have the same currency.

* When multiplying or dividing amount, Dbest practice recommends parameters that are simple
numeric values.

* Arguments of type java.lang.Number should be used with caution, since extracting its numeric value
in a feasible way is not trivial.

* Arithmetic operations should honor the advanced rules how rounding and truncation should be
handled. Refer to the following sections for further details.

6.3. Numeric Precision

For financial applications precision and rounding is a very important aspect. Additionally that an
incorrect arithmetic obviously has direct financial consequences, also legal aspects require specific
precision and rounding to by applied. The JSR’s expert group identified the following important and
distinct precision types:

* Internal precision
» External precision
* Formatting precision

The following sections will explain things in more detail.

71

6.3.1. Internal Precision

Overview

This precision type is the most important one, since it is directly related/determined by the internal
numeric representation of the class implementing MonetaryAmount. Hereby:

* The internal numeric capabilities of a MonetaryAmount typically exceed the scale implied by the
corresponding currency. Internal rounding must be done after each operation, but this rounding
has nothing in common with the rounding implied by the currency attached. Basically the
monetary arithmetics are completely independent of the currency, or in other words rounding
should only be done implicitly when required by the internal numeric representation to
minimize the loss of numeric precision.

* For calculations that require high scaled results, e.g. financial product calculations, it is
recommended to work with relatively high scales, e.g. 64 or even higher scales, as provided by
the BigDecimal class [Therefore the default reference implementation class, Money,is based on
BigDecimal and allows to explicitly configure its MathContext used on creation.]. On the other hand
when monetary arithmetics must be fast, e.g. in trading, scale requirements are often reduced in
favor of fast data manipulation. This contradictory requirements were basically the key reason,
why the model for MonetaryAmount does not explicitly specify the numeric representation to be
used.

» Additionally during a financial calculation, the points, where rounding is feasible, are basically
use case dependent and therefore should not be performed by a MonetaryAmount implementation
implicitly. Instead of, roundings can be applied as useful as monetary adjustments explicitly,
when useful.

» Also worth to mention is that for the same currency different roundings may be defined (default
rounding, cash rounding, special rounding for presentation purposes), so there is no such
concept as THE rounding for a monetary amount.

Configuring and Changing Internal Precision

An implementation of MonetaryAmount may support changing the internal precision or numeric
capabilities. But any value type semantics must be strictly obeyed, meaning that changing a
monetary amount’s internal precision or numeric capabilities, requires creating of a new instance.

Additionally if an implementation of a MonetaryAmount supports different numeric capabilities, it is
useful to allow the default capabilities to be configurable. Hereby a mechanism should be used, that is
not shared in EE runtime context, such as a property file in the classpath.

Inheriting Numeric Representation Capabilities

When performing calculations with the value type semantics new instances of amounts are created
for each calculation performed. This implies additional constraints:

* By inheriting the MonetaryAmount implementation type to its return types of all arithmetic
operations, also the numeric capabilities must be inherited.

72

* Finally a MonetaryAmount implementation is required to throw an ArithmeticException, if a client
tries to create a new instance with a numeric value that exceeds its internal representation
capabilities. Since each arithmetic operation requires the creation of a new amount instance, as
a consequence, all operations that exceed the numeric capabilities must throw an
ArithmeticException (basically no implicit truncation is allowed).

6.3.2. External Precision

External precision is the precision applied, when the numeric part of a MonetaryAmount is externalized,
meaning a numeric part of an amount is accessed/converted into another numeric representation (e.g.
calling getNumber(Class), getNumberExact((Class)). This externalized representation may have reduced
numeric capabilities compared to the internal numeric representation, so truncation must be
performed, or some exception can be thrown. Generally a precision or scale reduction on
externalization should never throw an exception, despite the method variants are defined to be exact,
similar to BigDecimal.longValueExact(). The exact methods should then throw an exception, if the
externalization would result in data loss (some sort of truncation must be performed).

6.3.3. Display Precision

The precision used for displaying of monetary amounts on the screen, a printout or for passing values
through technical systems, is completely dependent on the use cases. This JSR supports these scenarios
with the possibility to apply arbitrary monetary adjustments (modeled as MonetaryOperator).

7. Examples

The following sections illustrate the API’s usage in more detail.

7.1. Working with org.javamoney.moneta.Money

A reference implementation of this JSR has to provide value type classes for monetary amounts,
hereby implementing MonetaryAmount, and registering at least one implementation class with the
Monetary singleton by implementing and registering a corresponding MonetayAmountFactory instance.

As an example the reference implementation provides a class org.javamoney.moneta.Money, which is
using java.math.BigDecimal internally:

Class Money

public final class Money
implements MonetaryAmount, Comparable<MonetaryAmount>, Serializable, CurrencySupplier {

The MonetaryContext (by default) hereby is defined as follows:

73

Default MonetaryContext settings

maxPrecision = 64; // may be extended arbitrarily
maxScale = -1; // unbounded

numeric class = java.math.BigDecimal

attributes: RoundingMode.HALF_EVEN.

Since a corresponding MonetaryAmountFactory is registered, a new instance can be created using the
typed factory:

Example Usage of MonetaryAmountFactory

MonetaryAmountFactory<Money> fact = Monetary.getAmountFactory(Money.class);
Money m = fact.withCurrency("USD").with(200.50).create();

Also a generic MonetaryAmount instance can be accessed using a raw factory (hereby it depends on the
configured default amount factory, which effective type instance is returned):

Example Usage MonetaryAmountFactory

MonetaryAmount amt = Monetary.getDefaultAmountFactory()
.withCurrency("USD").with(200.50).create();

Still we can evaluate the effective amount’s type effectively:

if(Money.class==amt.getClass()){
Money m = (Money)amt;

}

But in general, we do not need to know the exact implementation in most cases, since we can access
amount meta-data as a MonetaryContext, This meta-data provides information, such as the maximal
precision, maximal scale supported by the type’s implementation as well as other attributes. Refer to
The Monetary Context for more details.

Example Usage MonetaryContext

MonetaryContext ctx = m.getMonetaryContext();
if(ctx.getMaxPrecision()==0){
System.out.println("Unbounded maximal precision.");

}
if(ctx.getMaxScale()>=5){

System.out.println("Sufficient scale for our use case, go for it.");

}

74

Finally performing arithmetic operations in both above scenarios works similar as it is when using
java.math.BigDecimal:

Example Usage Monetary Arithmetic

MonetaryAmount amt = ...;
amt = amt.multiply(2.0).subtract(1.345);

Also the sample above illustrates how algorithmic operations can be chained together using a fluent
API. As mentioned also external functionality can be chained, e.g. using instances of MonetaryOperator:

Example Function Chaining [MonetaryFunctions is not part of the JSR, its just for illustration purposes.]

MonetaryAmount amt = ...;

amt = amt.multiply(2.12345).with(Monetary.getDefaultRounding())
.with(MonetaryFunctions.minimal(100)).
.multiply(2.12345).with(Monetary.getDefaultRounding())
.with(MonetaryFunctions.percent(23));

7.1.1. Numeric Precision and Scale

Since the Money implementation class, which is part of the reference implementation, internally uses
java.math.BigDecimal the numeric capabilities match exact the capabilities of BigDecimal. When
accessing MonetaryAmountFactory instances it is possible to configure the MathContext effectively used (by
default Money uses MathContext.DECIMAL64).:

Example Configuring a MonetaryAmountFactory, using the RI class Money as example.

MonetaryAmountFactory<Money> fact = Monetary.getAmountFactory(
MonetaryAmountFactoryQueryBuilder.of(Money.class)
.set(new MathContext(250, RoundingMode.HALF_DOWN)).build()
)i
// Creates an instance of Money with the given MathContext
MonetaryAmount m1 = fact.setCurrency("CHF").setNumber(250.34).create();
Money m2 = fact.setCurrency("CHF").setNumber(250.34).create();

7.1.2. Extending the API

Now, one last thing to discuss is, how users can add their own functionality, e.g. by writing their own
MonetaryOperator functions. Basically there are two distinct usage scenarios:

* When the basic arithmetic defined on each MonetaryAmount are sufficient, it should be easy to
implement such functionality, since its behaving like any other type, e.g.

75

public final class DuplicateOp implements MonetaryOperator{
public <T extends MonetaryAmount> T apply(T amount){
return (T) amount.multiply(2);

}
}

Hereby the amount type implicitly will throw an ArithemticException if the numeric capabilities are
not capable of creating the result required.

* In case where the basic operations are not sufficient anymore, or it is more convenient to do a
calculation externally, it is still not necessary to cast to any implementation type, since

- the numeric capabilities can be evaluated using the MonetaryContext. On [MonetaryAmountFactory]
both the default and the maximal supported MonetaryContext can be accessed.

o the numeric value can be extracted in a portable way accessing the NumberValue.

> a MonetaryFactory can be created to create the result of the same implementation type, without
having to cast to this type ever explicitly.

Below is a rather academical example of a MonetaryOperator that simply converts any given amount to
an amount with the same numeric value, but with XXX (undefined) as currency:

Simple example of a MonetaryOperstor using the MonetaryAmountFactory provided.

public final class ToInvalid implements MonetaryOperator{
public <T extends MonetaryAmount> T apply(T amount){
return (T)amount.getFactory().setCurrency("XXX").create();

}
}

7.2. Working with org.javamoney.moneta.FastMoney

This class implements a MonetaryAmount using long as numeric representation, whereas the full amount
is interpreted as minor units, with a denumerator of 100000.

As an example CHF 2.5 is internally stored as CHF 250000. Addition and subtraction of values is trivial,
whereas division and multiplication get complex with non integral values. Compared to Money the
possible amounts to be modeled are limited to an overall precision of 18 and a fixed scale of 5 digits.

Beside that the overall handling of FastMoney is similar to Money. So we could rewrite the former
example by just replacing FastMoney with Money:

76

Usage Example - FastMoney

MonetaryAmountFactory<FastMoney> fact = Monetary.getAmountFactory(FastMoney.class);
// Creates an instance of Money with the given MathContext

MonetaryAmount m1 = fact.setCurrency("CHF").setNumber(250.34).create();

FastMoney m2 = fact.setCurrency("CHF").setNumber(250.34).create();

Of course, the MonetaryContext is different than for Money:

The MonetaryContext of FastMoney

maxPrecision = 18; // hard limit
maxScale = 5; // fixed scale
numeric class = Long

attributes: RoundingMode.HALF_EVEN

7.3. Calculating a Total

A

total of amounts can be calculated in multiple ways, one way is simply to chain the amounts with

add(MonetaryAmount):

Usage Example Calculating a Total

MonetaryAmount[] params = new MonetaryAmount[]{
Money.of("CHF", 100), Money.of("CHF", 10.20),
Money.of ("CHF", 1.15),};
MonetaryAmount total = params[0];
for(int i=1; i<params.length;i++){
total = total.add(params[i]);
}

As an alternate it is also possible to define a MonetaryOperator, which can be passed to all amounts:

77

Example of total/add method

public class Total implements MonetaryOperator{
private MonetaryAmount total;

public <T extends MonetaryAmount<T>> T apply(T amount){
if(total==null){
total = amount;
}
else{
total = total.add(amount);
}
// ensure to return correct type, since different implementations
// can be passed as amount parameter
return amount.getFactory().with(total).create();

public MonetaryAmount getTotal(){
return total;

}

public <T extends MonetaryAmount> T getTotal(Class<T> amountType){
return Monetary.getAmountFactory(amountType).with(total).create();

}
}
We are well aware of the fact that this implementation still has some severe
drawbacks, but we decided for simplicity to not add the following features to
this example:
IMPORTANT

 the implementation can only handle one currency, a better implementation
could also be multi-currency capable.

» The implementation above is not thread-safe.
Now with the MonetaryOperator totalizing looks as follows:

Example Using Total/add method

Total total = new Total();
for(int i=1; i<params.length;i++){
total.with(params[i]);

+
System.out.println("TOTAL: " + total.getTotal());

78

A similar approach can also be used for other multi value calculations as used in statistics, e.g. average,
median etc.

7.4. Calculating a Present Value

The present value (abbreviated PV) shows how financial formulas can be implemented based on the
JSR 354 API. A PV models the current value of a financial in- or outflow in the future, weighted with a
calculatory interest rate. The PV is defined as follows:

C / ((1+r)™n)

Hereby
* nis the time of the cash flow (in periods)

* r is the discount rate (the rate of return that could be earned on an investment in the financial
markets with similar risk.); the opportunity cost of capital.

* (is the net cash flow i.e. cash inflow - cash outflow, at time t . For educational purposes,
The same financial function now can be implemented for example as follows:

Example Using Total/add method

public <T extends MonetaryAmount> T presentValue(
T amt, BigDecimal rate, int periods){
BigDecimal divisor = BigDecimal.ONE.add(rate).pow(periods);
// cast should be safe for implementations that adhere to this spec
return (T)amt.divide(divisor);

}

This algorithm can be implemented as MonetaryOperator:

79

Example Implementing a MonetaryOperator

public final class PresentValue implements MonetaryOperator{
private BigDecimal rate;
private int periods;
private BigDecimal divisor;

public PresentValue(BigDecimal rate, int periods){
Objects.requireNotNull(rate);
this.rate = rate;
this.periods = periods;
this.divisor = BigDecimal.ONE.add(periods).power(periods);
}

public int getPeriods(){ return periods; }
public BigDecimal getRate(){ return rate; }

public <T extends MonetaryAmount> T apply(T amount){
// cast should be safe for implementations that adhere to this spec
return (T)amount.divide(divisor);

}

public String toString(){...}
}

For simplicity we did not add additional feature such as caching of PresentValue instances using a
static factory method, or pre-calculation of divisor matrices. Now given the MonetaryOperator a present
value can be calculated as follows:

Example Using a Financial Function

Money m = Money.of("CHF", 1000);

// present value for an amount of 100, available in two periods,
// with a rate of 5%.

Money pv = m.with(new PresentValue(new BigDecimal("0.05"), 2));

7.5. Performing Currency Conversion

Currency Conversion also is a special case of a MonetaryOperator since it creates a new amount based
on another amount. Hereby by the conversion the resulting amount will typically have a different
currency and a different numeric amount:

80

Example Currency Conversion

MonetaryAmount inCHF =...;
CurrencyConversion conv = MonetaryConversions.getConversion("EUR");
MonetaryAmount inEUR = inCHF.with(conv);

Also we can define the providers to be used for currency conversion by passing the provider names
explicitly:

CurrencyConversion conv = MonetaryConversions.getConversion("EUR", "EZB", "IMF");

To cover also more complex usage scenarios we can also pass a ConversionQuery with additional
parameters for conversion, e.g.:

MonetaryAmount inCHF =...;

CurrencyConversion conv = MonetaryConversions.getConversion(ConversionQueryBuilder.of()
.setProviders("CS", "EZB", "IMF")
.setTermCurrency("EUR")
.set(MonetaryAmount.class, inCHF, MonetaryAmount.class)
.set(LocalDate.of (2008, 1, 1))
.setRateType(RateType.HISTORIC)
.set(StockExchange.NYSE) // custom type
.set("contractId", "AA-1234.2")
.build());

MonetaryAmount inEUR = inCHF.with(conv);

APPENDIX

Bibliography

[Bitcoin] http://bitcoin.org/en/

[ICU] http://site.icu-project.org/

[ISO-4217] http://www.iso.org/iso/home/standards/currency_codes.htm
[ISO-20022] http://www.is020022.0rg

[JodaMoney] http://www.joda.org/joda-money/

[java.net] http://java.net/projects/javamoney/

[JSR354] http://jcp.org/en/jsr/detail?id=354

81

http://bitcoin.org/en/
http://site.icu-project.org/
http://www.iso.org/iso/home/standards/currency_codes.htm
http://www.iso20022.org
http://www.joda.org/joda-money/
http://java.net/projects/javamoney/
http://jcp.org/en/jsr/detail?id=354

[source] Public Source Code Repository on GitHub: http://github.com/JavaMoney, Branch/Tag
matching updated PDR is {version}

Links

* JSR 354 on jcp.org
* JavaMoney Project on Java.net
> JSR 354 API GitHub Repository
o Moneta RI GitHub Repository
* Java Practices about Representing Money
* Working with Money in Java
* Java currency by Roedy Green, Canadian Mind Products
* UOMo Business, based on ICU4J and concepts by JScience Economics]
» ICU4J Uses Number for all operations and internal storage in its Money type.
* MoneyDance API

* JavaMoney is the Apache 2.0 licensed OSS project that evolved from JSR 354 development. It
provides concrete implementations for currency conversion and mapping, advanced formatting,
historic data access, regions and a set of financial calculations and formulas.

* Joda Money can be referred to as an inspiration for API and design style. it is based on real-world
use cases in an e-commerce application for airlines

* Grails Currencies uses BigDecimal as internal representation, but API only exposes Number in all
Money operations like plus(), minus() or similar.

* Why not to use BigDecimal for Money
* M-Pesa-Mobile Money in Africa
* Currency Internationalization (i18n), Multiple Currencies and Foreign Exchange (FX).

* http://en.wikipedia.org/wiki/Japanese_units_of measurement#Money: Discussion of
internationalization of currencies, rounding, grouping and formatting, separators etc]

* http://speleotrove.com/decimal/
* http://sourceforge.net/projects/oquote/

» Karatsuba Algorithm for Fast Big Decimal Multiplication

82

http://github.com/JavaMoney
http://jcp.org/en/jsr/detail?id=35
http://java.net/projects/javamoney/
https://github.com/JavaMoney
https://github.com/JavaMoney/jsr354-ro
http://www.javapractices.com/topic/TopicAction.do?Id=13
http://blog.eisele.net/2011/08/working-with-money-in-java.html
http://mindprod.com/jgloss/currency.html
http://mindprod.com
http://www.eclipse.org/uomo/
http://site.icu-project.org/
http://moneydance.com/dev/apidoc/
http://javamoney.org
http://www.joda.org/joda-money
http://grails.org/plugin/currencies
http://lemnik.wordpress.com/2011/03/25/bigdecimal-and-your-money/
http://de.wikipedia.org/wiki/M-Pesa
http://en.wikipedia.org/wiki/Japanese_units_of_measurement#Money
http://speleotrove.com/decimal/
http://sourceforge.net/projects/oquote/
http://en.wikipedia.org/wiki/Karatsuba_algorithm

Related Initiatives

* http://timeandmoney.sourceforge.net/ [Eric Evans Time and Money Library]

 http://bitcoinj.github.io/ [Bitcoin Java Client]

83

http://timeandmoney.sourceforge.net/
http://bitcoinj.github.io/

	JSR 354 Money and Currency — Specification
	Table of Contents
	Version Information:
	1. Introduction
	1.1. Expert group
	1.2. Specification goals
	1.3. Scope
	1.4. Required Java version
	1.5. How this document is organized

	2. Use Cases
	2.1. Scenario eCommerce (Online-Shop)
	2.2. Scenario Trading Site
	2.3. Scenario Virtual Worlds and Game Portals
	2.4. Scenario Social Markets
	2.5. Scenario Banking & Financial Applications
	2.6. Scenario Insurance & Pension

	3. Requirements
	3.1. Core Requirements
	3.2. Formatting Requirements
	3.3. Java EE Support
	3.4. Non Functional Requirements

	4. Specification
	4.1. Package and Project Structure
	4.2. Money and Currency Core API
	4.3. Currency Conversion
	4.4. Money and Currency Formatting API
	4.5. Money and Currency SPI

	5. Meta-Data Contexts and Query Models
	5.1. Overview
	5.2. AbstractContext
	5.3. Abstract Class AbstractContextBuilder
	5.4. Abstract Class AbstractQuery
	5.5. Abstract Class AbstractQueryBuilder

	6. Implementation Recommendations
	6.1. Overview
	6.2. Monetary Arithmetic
	6.3. Numeric Precision

	7. Examples
	7.1. Working with org.javamoney.moneta.Money
	7.2. Working with org.javamoney.moneta.FastMoney
	7.3. Calculating a Total
	7.4. Calculating a Present Value
	7.5. Performing Currency Conversion

	APPENDIX
	Bibliography
	Links
	Related Initiatives

