-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
428 lines (361 loc) · 18.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import torch
import torch.nn as nn
import torch.nn.functional as F
from features.custom_features import custom_features
from features.densenet_features import densenet121_features, densenet161_features, \
densenet169_features, densenet201_features
from features.resnet_features import resnet18_features, resnet34_features, \
resnet50_features, \
resnet101_features, resnet152_features
from features.vgg_features import vgg11_features, vgg11_bn_features, vgg13_features, \
vgg13_bn_features, vgg16_features, vgg16_bn_features, \
vgg19_features, vgg19_bn_features
from receptive_field import compute_proto_layer_rf_info_v2
base_architecture_to_features = {'resnet18': resnet18_features,
'resnet34': resnet34_features,
'resnet50': resnet50_features,
'resnet101': resnet101_features,
'resnet152': resnet152_features,
'densenet121': densenet121_features,
'densenet161': densenet161_features,
'densenet169': densenet169_features,
'densenet201': densenet201_features,
'vgg11': vgg11_features,
'vgg11_bn': vgg11_bn_features,
'vgg13': vgg13_features,
'vgg13_bn': vgg13_bn_features,
'vgg16': vgg16_features,
'vgg16_bn': vgg16_bn_features,
'vgg19': vgg19_features,
'vgg19_bn': vgg19_bn_features,
'custom': custom_features}
cache_embeddings = {}
class PPNet(nn.Module):
def __init__(self, features, img_size, prototype_shape,
proto_layer_rf_info, num_classes, topk_k, init_weights=True,
prototype_activation_function='log',
add_on_layers_type='bottleneck', hard_constraint_image_dir=None):
super(PPNet, self).__init__()
self.hard_constraint_image_dir = hard_constraint_image_dir
self.img_size = img_size
self.prototype_shape = prototype_shape
self.num_prototypes = prototype_shape[0]
self.num_classes = num_classes
self.topk_k = topk_k
self.epsilon = 1e-4
# prototype_activation_function could be 'log', 'linear',
# or a generic function that converts distance to similarity score
self.prototype_activation_function = prototype_activation_function
'''
Here we are initializing the class identities of the prototypes
Without domain specific knowledge we allocate the same number of
prototypes for each class
'''
assert (self.num_prototypes % self.num_classes == 0)
# a onehot indication matrix for each prototype's class identity
self.prototype_class_identity = torch.zeros(self.num_prototypes,
self.num_classes)
num_prototypes_per_class = self.num_prototypes // self.num_classes
for j in range(self.num_prototypes):
self.prototype_class_identity[j, j // num_prototypes_per_class] = 1
self.proto_layer_rf_info = proto_layer_rf_info
# this has to be named features to allow the precise loading
self.features = features
features_name = str(self.features).upper()
if features_name.startswith('VGG') or features_name.startswith(
'RES') or features_name.startswith('CUSTOM'):
first_add_on_layer_in_channels = \
[i for i in features.modules() if isinstance(i, nn.Conv2d)][
-1].out_channels
elif features_name.startswith('DENSE'):
first_add_on_layer_in_channels = \
[i for i in features.modules() if isinstance(i, nn.BatchNorm2d)][
-1].num_features
else:
raise Exception('other base base_architecture NOT implemented')
if add_on_layers_type == 'bottleneck':
add_on_layers = []
current_in_channels = first_add_on_layer_in_channels
while (current_in_channels > self.prototype_shape[1]) or (
len(add_on_layers) == 0):
current_out_channels = max(self.prototype_shape[1],
(current_in_channels // 2))
add_on_layers.append(nn.Conv2d(in_channels=current_in_channels,
out_channels=current_out_channels,
kernel_size=1))
add_on_layers.append(nn.ReLU())
add_on_layers.append(nn.Conv2d(in_channels=current_out_channels,
out_channels=current_out_channels,
kernel_size=1))
if current_out_channels > self.prototype_shape[1]:
add_on_layers.append(nn.ReLU())
else:
assert (current_out_channels == self.prototype_shape[1])
add_on_layers.append(nn.Sigmoid())
current_in_channels = current_in_channels // 2
self.add_on_layers = nn.Sequential(*add_on_layers)
else:
self.add_on_layers = nn.Sequential(
nn.Conv2d(in_channels=first_add_on_layer_in_channels,
out_channels=self.prototype_shape[1], kernel_size=1),
nn.ReLU(),
nn.Conv2d(in_channels=self.prototype_shape[1],
out_channels=self.prototype_shape[1], kernel_size=1),
nn.Sigmoid()
)
self.prototype_vectors = nn.Parameter(torch.rand(self.prototype_shape),
requires_grad=True)
# do not make this just a tensor,
# since it will not be moved automatically to gpu
self.ones = nn.Parameter(torch.ones(self.prototype_shape),
requires_grad=False)
self.last_layer = nn.Linear(self.num_prototypes, self.num_classes,
bias=False) # do not use bias
if init_weights:
self._initialize_weights()
# for loss att
self.attribution_map = torch.zeros(self.num_classes, self.num_prototypes,
requires_grad=False)
# for loss aggr
self.irrelevant_prototypes_vector = None
self.irrelevant_prototypes_class = list()
def add_irrelevant_prototype(self, prototype_number, class_number):
with torch.no_grad():
self._validate_prototype_id(class_number)
self._validate_prototype_id(prototype_number)
self.attribution_map[class_number, prototype_number] = 1
def add_class_with_confounder(self, class_number):
with torch.no_grad():
self._validate_class_id(class_number)
if class_number not in self.irrelevant_prototypes_class:
self.irrelevant_prototypes_class.append(class_number)
def add_irrelevant_concept(self, prototype_number: int, class_number: int):
with torch.no_grad():
self._validate_prototype_id(prototype_number)
self._validate_class_id(class_number)
raise NotImplementedError('check if prototype has been already added')
proto = self.prototype_vectors[prototype_number, ...].detach().clone()
if self.irrelevant_prototypes_vector is None:
self.irrelevant_prototypes_vector = proto[None, ...]
else:
self.irrelevant_prototypes_vector = torch.cat(
[self.irrelevant_prototypes_vector, proto[None, ...]], dim=0)
self.irrelevant_prototypes_class.append(class_number)
self.irrelevant_prototypes_vector.requires_grad = False
# re-initialize prototypes of the class with confounder
self._re_initialize_prototype_of_class(class_number)
def _validate_class_id(self, cl_number):
if cl_number >= self.num_classes or cl_number < 0:
raise ValueError('Invalid class id')
def _validate_prototype_id(self, proto_id):
if proto_id >= self.prototype_shape[0] or proto_id < 0:
raise ValueError('Invalid prototype id')
def _re_initialize_prototype_of_class(self, class_number):
prototype_banned_class = torch.flatten(
torch.nonzero(self.prototype_class_identity[:, class_number]))
for p in prototype_banned_class:
self.re_initialize_prototype_by_id(p)
def re_initialize_prototype_by_id(self, proto_idx):
with torch.no_grad():
state_dict = self.state_dict()
state_dict['prototype_vectors'][proto_idx] = torch.rand_like(
state_dict['prototype_vectors'][proto_idx])
self.load_state_dict(state_dict)
def conv_features(self, x):
"""
the feature input to prototype layer
"""
fe = self.features(x)
x = self.add_on_layers(fe)
return x
@staticmethod
def _weighted_l2_convolution(input, filter, weights):
"""
input of shape N * c * h * w
filter of shape P * c * h1 * w1
weight of shape P * c * h1 * w1
"""
input2 = input ** 2
input_patch_weighted_norm2 = F.conv2d(input=input2, weight=weights)
filter2 = filter ** 2
weighted_filter2 = filter2 * weights
filter_weighted_norm2 = torch.sum(weighted_filter2, dim=(1, 2, 3))
filter_weighted_norm2_reshape = filter_weighted_norm2.view(-1, 1, 1)
weighted_filter = filter * weights
weighted_inner_product = F.conv2d(input=input, weight=weighted_filter)
# use broadcast
intermediate_result = \
- 2 * weighted_inner_product + filter_weighted_norm2_reshape
# x2_patch_sum and intermediate_result are of the same shape
distances = F.relu(input_patch_weighted_norm2 + intermediate_result)
return distances
def _l2_convolution(self, x):
"""
apply self.prototype_vectors as l2-convolution filters on input x
"""
x2 = x ** 2
x2_patch_sum = F.conv2d(input=x2, weight=self.ones)
p2 = self.prototype_vectors ** 2
p2 = torch.sum(p2, dim=(1, 2, 3))
# p2 is a vector of shape (num_prototypes,)
# then we reshape it to (num_prototypes, 1, 1)
p2_reshape = p2.view(-1, 1, 1)
xp = F.conv2d(input=x, weight=self.prototype_vectors)
intermediate_result = - 2 * xp + p2_reshape # use broadcast
# x2_patch_sum and intermediate_result are of the same shape
distances = F.relu(x2_patch_sum + intermediate_result)
return distances
def _l2_convolution_on_irrelevant_concepts(self, x, proto_vectors):
ones = torch.ones(proto_vectors.size())
x2 = x ** 2
x2_patch_sum = F.conv2d(input=x2, weight=ones)
p2 = proto_vectors ** 2
p2 = torch.sum(p2, dim=(1, 2, 3))
# p2 is a vector of shape (num_prototypes,)
# then we reshape it to (num_prototypes, 1, 1)
p2_reshape = p2.view(-1, 1, 1)
xp = F.conv2d(input=x, weight=proto_vectors)
intermediate_result = - 2 * xp + p2_reshape # use broadcast
# x2_patch_sum and intermediate_result are of the same shape
distances = F.relu(x2_patch_sum + intermediate_result)
return distances
def prototype_distances(self, x):
"""
x is the raw input
"""
conv_features = self.conv_features(x)
distances = self._l2_convolution(conv_features)
return distances
def irrelevant_concept_distances(self, x):
"""
x is the raw input
"""
conv_features = self.conv_features(x)
distances = self._l2_convolution_on_irrelevant_concepts(conv_features,
self.irrelevant_prototypes_vector)
return distances
def distance_2_similarity(self, distances, epsilon: float =None):
epsilon = self.epsilon if epsilon is None else epsilon
if self.prototype_activation_function == 'log':
return torch.log((distances + 1) / (distances + epsilon))
elif self.prototype_activation_function == 'linear':
return -distances
else:
return self.prototype_activation_function(distances)
def forward(self, x):
distances = self.prototype_distances(x)
if 0 < self.topk_k < 1:
self.topk_k = int(self.topk_k * (distances.shape[2] * distances.shape[3]))
else:
self.topk_k = int(self.topk_k)
# top-k avg
_distances = distances.view(distances.shape[0], distances.shape[1], -1)
top_k_neg_distances, _ = torch.topk(-_distances, self.topk_k)
closest_k_distances = - top_k_neg_distances
min_distances = F\
.avg_pool1d(closest_k_distances, kernel_size=closest_k_distances.shape[2]) \
.view(-1, self.num_prototypes)
prototype_activations = self.distance_2_similarity(distances)
_activations = prototype_activations.view(prototype_activations.shape[0],
prototype_activations.shape[1], -1)
top_k_activations, _ = torch.topk(_activations, self.topk_k)
prototype_activations = F\
.avg_pool1d(top_k_activations, kernel_size=top_k_activations.shape[2]) \
.view(-1, self.num_prototypes)
logits = self.last_layer(prototype_activations)
return logits, min_distances, distances
def push_forward(self, x):
"""this method is needed for the pushing operation"""
conv_output = self.conv_features(x)
distances = self._l2_convolution(conv_output)
return conv_output, distances
def prune_prototypes(self, prototypes_to_prune):
"""
prototypes_to_prune: a list of indices each in
[0, current number of prototypes - 1] that indicates the prototypes to
be removed
"""
prototypes_to_keep = list(
set(range(self.num_prototypes)) - set(prototypes_to_prune))
self.prototype_vectors = nn.Parameter(
self.prototype_vectors.data[prototypes_to_keep, ...],
requires_grad=True)
self.prototype_shape = list(self.prototype_vectors.size())
self.num_prototypes = self.prototype_shape[0]
# changing self.last_layer in place
# changing in_features and out_features make sure the numbers are consistent
self.last_layer.in_features = self.num_prototypes
self.last_layer.out_features = self.num_classes
self.last_layer.weight.data = self.last_layer.weight.data[:, prototypes_to_keep]
# self.ones is nn.Parameter
self.ones = nn.Parameter(self.ones.data[prototypes_to_keep, ...],
requires_grad=False)
# self.prototype_class_identity is torch tensor
# so it does not need .data access for value update
self.prototype_class_identity = self.prototype_class_identity[
prototypes_to_keep, :]
def __repr__(self):
# PPNet(self, features, img_size, prototype_shape,
# proto_layer_rf_info, num_classes, init_weights=True):
rep = (
'PPNet(\n'
'\tfeatures: {},\n'
'\timg_size: {},\n'
'\tprototype_shape: {},\n'
'\tproto_layer_rf_info: {},\n'
'\tnum_classes: {},\n'
'\tepsilon: {},\n'
'\tclasses_to_fix: {}\n'
')'
)
return rep.format(self.features,
self.img_size,
self.prototype_shape,
self.proto_layer_rf_info,
self.num_classes,
self.epsilon,
self.irrelevant_prototypes_class)
def set_last_layer_incorrect_connection(self, incorrect_strength):
"""
the incorrect strength will be actual strength if -0.5 then input -0.5
"""
positive_one_weights_locations = torch.t(self.prototype_class_identity)
negative_one_weights_locations = 1 - positive_one_weights_locations
correct_class_connection = 1
incorrect_class_connection = incorrect_strength
self.last_layer.weight.data.copy_(
correct_class_connection * positive_one_weights_locations
+ incorrect_class_connection * negative_one_weights_locations)
def _initialize_weights(self):
for m in self.add_on_layers.modules():
if isinstance(m, nn.Conv2d):
# every init technique has an underscore _ in the name
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
self.set_last_layer_incorrect_connection(incorrect_strength=-0.5)
def construct_PPNet(base_architecture, pretrained, img_size, prototype_shape,
num_classes, topk_k, prototype_activation_function='log',
add_on_layers_type='bottleneck',
hard_constraint_image_dir=None) -> PPNet:
features = base_architecture_to_features[base_architecture](pretrained=pretrained)
layer_filter_sizes, layer_strides, layer_paddings = features.conv_info()
proto_layer_rf_info = compute_proto_layer_rf_info_v2(img_size=img_size,
layer_filter_sizes=layer_filter_sizes,
layer_strides=layer_strides,
layer_paddings=layer_paddings,
prototype_kernel_size=
prototype_shape[2])
return PPNet(features=features,
img_size=img_size,
prototype_shape=prototype_shape,
proto_layer_rf_info=proto_layer_rf_info,
num_classes=num_classes,
topk_k=topk_k,
init_weights=True,
prototype_activation_function=prototype_activation_function,
add_on_layers_type=add_on_layers_type,
hard_constraint_image_dir=hard_constraint_image_dir)