We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
llama_model_loader: loaded meta data with 32 key-value pairs and 219 tensors from /data/huggingface/hub/models--city96--t5-v1_1-xxl-encoder-gguf/snapshots/005a6ea51a7d0b84d677b3e633bb52a8c85a83d9/./t5-v1_1-xxl-encoder-Q8_0.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = t5encoder llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = T5 V1_1 Xxl llama_model_loader: - kv 3: general.organization str = Google llama_model_loader: - kv 4: general.finetune str = encoder-hf llama_model_loader: - kv 5: general.basename str = t5-v1_1 llama_model_loader: - kv 6: general.size_label str = xxl llama_model_loader: - kv 7: t5encoder.context_length u32 = 512 llama_model_loader: - kv 8: t5encoder.embedding_length u32 = 4096 llama_model_loader: - kv 9: t5encoder.feed_forward_length u32 = 10240 llama_model_loader: - kv 10: t5encoder.block_count u32 = 24 llama_model_loader: - kv 11: t5encoder.attention.head_count u32 = 64 llama_model_loader: - kv 12: t5encoder.attention.key_length u32 = 64 llama_model_loader: - kv 13: t5encoder.attention.value_length u32 = 64 llama_model_loader: - kv 14: t5encoder.attention.layer_norm_epsilon f32 = 0.000001 llama_model_loader: - kv 15: t5encoder.attention.relative_buckets_count u32 = 32 llama_model_loader: - kv 16: t5encoder.attention.layer_norm_rms_epsilon f32 = 0.000001 llama_model_loader: - kv 17: general.file_type u32 = 7 llama_model_loader: - kv 18: tokenizer.ggml.model str = t5 llama_model_loader: - kv 19: tokenizer.ggml.pre str = default llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,32128] = ["", "", "", "▁", "X"... llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,32128] = [0.000000, 0.000000, 0.000000, -2.012... llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,32128] = [3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... llama_model_loader: - kv 23: tokenizer.ggml.add_space_prefix bool = true llama_model_loader: - kv 24: tokenizer.ggml.remove_extra_whitespaces bool = true llama_model_loader: - kv 25: tokenizer.ggml.precompiled_charsmap arr[u8,237539] = [0, 180, 2, 0, 0, 132, 0, 0, 0, 0, 0,... llama_model_loader: - kv 26: tokenizer.ggml.eos_token_id u32 = 1 llama_model_loader: - kv 27: tokenizer.ggml.unknown_token_id u32 = 2 llama_model_loader: - kv 28: tokenizer.ggml.padding_token_id u32 = 0 llama_model_loader: - kv 29: tokenizer.ggml.add_bos_token bool = false llama_model_loader: - kv 30: tokenizer.ggml.add_eos_token bool = true llama_model_loader: - kv 31: general.quantization_version u32 = 2 llama_model_loader: - type f32: 50 tensors llama_model_loader: - type q8_0: 169 tensors llm_load_vocab: special tokens cache size = 3 llm_load_vocab: token to piece cache size = 0.2111 MB llm_load_print_meta: format = GGUF V3 (latest) llm_load_print_meta: arch = t5encoder llm_load_print_meta: vocab type = UGM llm_load_print_meta: n_vocab = 32128 llm_load_print_meta: n_merges = 0 llm_load_print_meta: vocab_only = 0 llm_load_print_meta: n_ctx_train = 512 llm_load_print_meta: n_embd = 4096 llm_load_print_meta: n_layer = 24 llm_load_print_meta: n_head = 64 llm_load_print_meta: n_head_kv = 64 llm_load_print_meta: n_rot = 64 llm_load_print_meta: n_swa = 0 llm_load_print_meta: n_embd_head_k = 64 llm_load_print_meta: n_embd_head_v = 64 llm_load_print_meta: n_gqa = 1 llm_load_print_meta: n_embd_k_gqa = 4096 llm_load_print_meta: n_embd_v_gqa = 4096 llm_load_print_meta: f_norm_eps = 0.0e+00 llm_load_print_meta: f_norm_rms_eps = 1.0e-06 llm_load_print_meta: f_clamp_kqv = 0.0e+00 llm_load_print_meta: f_max_alibi_bias = 0.0e+00 llm_load_print_meta: f_logit_scale = 0.0e+00 llm_load_print_meta: n_ff = 10240 llm_load_print_meta: n_expert = 0 llm_load_print_meta: n_expert_used = 0 llm_load_print_meta: causal attn = 1 llm_load_print_meta: pooling type = 0 llm_load_print_meta: rope type = -1 llm_load_print_meta: rope scaling = linear llm_load_print_meta: freq_base_train = 10000.0 llm_load_print_meta: freq_scale_train = 1 llm_load_print_meta: n_ctx_orig_yarn = 512 llm_load_print_meta: rope_finetuned = unknown llm_load_print_meta: ssm_d_conv = 0 llm_load_print_meta: ssm_d_inner = 0 llm_load_print_meta: ssm_d_state = 0 llm_load_print_meta: ssm_dt_rank = 0 llm_load_print_meta: ssm_dt_b_c_rms = 0 llm_load_print_meta: model type = ?B llm_load_print_meta: model ftype = Q8_0 llm_load_print_meta: model params = 4.76 B llm_load_print_meta: model size = 4.71 GiB (8.50 BPW) llm_load_print_meta: general.name = T5 V1_1 Xxl llm_load_print_meta: EOS token = 1 '' llm_load_print_meta: UNK token = 2 '' llm_load_print_meta: PAD token = 0 '' llm_load_print_meta: LF token = 3 '▁' llm_load_print_meta: max token length = 20 llm_load_tensors: ggml ctx size = 0.10 MiB llm_load_tensors: CPU buffer size = 4826.12 MiB ................................................................................................. llama_new_context_with_model: n_ctx = 512 llama_new_context_with_model: n_batch = 512 llama_new_context_with_model: n_ubatch = 512 llama_new_context_with_model: flash_attn = 0 llama_new_context_with_model: freq_base = 10000.0 llama_new_context_with_model: freq_scale = 1 llama_kv_cache_init: CPU KV buffer size = 192.00 MiB llama_new_context_with_model: KV self size = 192.00 MiB, K (f16): 96.00 MiB, V (f16): 96.00 MiB llama_new_context_with_model: CPU output buffer size = 0.12 MiB llama_new_context_with_model: CPU compute buffer size = 234.00 MiB llama_new_context_with_model: graph nodes = 845 llama_new_context_with_model: graph splits = 1 AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | Model metadata: {'tokenizer.ggml.eos_token_id': '1', 'general.quantization_version': '2', 'tokenizer.ggml.model': 't5', 'tokenizer.ggml.add_bos_token': 'false', 'tokenizer.ggml.remove_extra_whitespaces': 'true', 't5encoder.attention.layer_norm_rms_epsilon': '0.000001', 't5encoder.attention.relative_buckets_count': '32', 't5encoder.attention.layer_norm_epsilon': '0.000001', 'tokenizer.ggml.unknown_token_id': '2', 't5encoder.attention.value_length': '64', 'general.architecture': 't5encoder', 'general.file_type': '7', 't5encoder.context_length': '512', 't5encoder.feed_forward_length': '10240', 'tokenizer.ggml.padding_token_id': '0', 'general.basename': 't5-v1_1', 'tokenizer.ggml.pre': 'default', 'general.name': 'T5 V1_1 Xxl', 'general.finetune': 'encoder-hf', 't5encoder.attention.key_length': '64', 'general.type': 'model', 't5encoder.attention.head_count': '64', 'general.size_label': 'xxl', 'general.organization': 'Google', 't5encoder.embedding_length': '4096', 'tokenizer.ggml.add_eos_token': 'true', 'tokenizer.ggml.add_space_prefix': 'true', 't5encoder.block_count': '24'} Using fallback chat format: llama-2 /tmp/pip-install-rx431hta/llama-cpp-python_78f9dcf2ce95424dbc2c1f7ebd107737/vendor/llama.cpp/src/llama.cpp:13908: GGML_ASSERT(lctx.is_encoding) failed /usr/local/lib/python3.10/dist-packages/llama_cpp/lib/libggml.so(+0x1015b)[0x7f42c791a15b] /usr/local/lib/python3.10/dist-packages/llama_cpp/lib/libggml.so(ggml_abort+0x15e)[0x7f42c791bd2e] /usr/local/lib/python3.10/dist-packages/llama_cpp/lib/libllama.so(_ZN17llm_build_context16build_t5_encoderEv+0x11a0)[0x7f42c7b5ef90] /usr/local/lib/python3.10/dist-packages/llama_cpp/lib/libllama.so(+0x80d92)[0x7f42c7ad7d92] /usr/local/lib/python3.10/dist-packages/llama_cpp/lib/libllama.so(llama_decode+0x582)[0x7f42c7b35972] /lib/x86_64-linux-gnu/libffi.so.8(+0x7e2e)[0x7f42c7e45e2e] /lib/x86_64-linux-gnu/libffi.so.8(+0x4493)[0x7f42c7e42493] /usr/lib/python3.10/lib-dynload/_ctypes.cpython-310-x86_64-linux-gnu.so(+0xa3e9)[0x7f42c7e603e9] /usr/lib/python3.10/lib-dynload/_ctypes.cpython-310-x86_64-linux-gnu.so(+0x13302)[0x7f42c7e69302] python3(_PyObject_MakeTpCall+0x25b)[0x55a5b37e152b] python3(_PyEval_EvalFrameDefault+0x6f0b)[0x55a5b37da16b] python3(_PyFunction_Vectorcall+0x7c)[0x55a5b37eb6ac] python3(_PyEval_EvalFrameDefault+0x8cb)[0x55a5b37d3b2b] python3(_PyFunction_Vectorcall+0x7c)[0x55a5b37eb6ac] python3(_PyEval_EvalFrameDefault+0x8cb)[0x55a5b37d3b2b] python3(+0x1785a2)[0x55a5b38085a2] python3(_PyEval_EvalFrameDefault+0xac4)[0x55a5b37d3d24] python3(+0x201a15)[0x55a5b3891a15] python3(+0x15b909)[0x55a5b37eb909] python3(_PyEval_EvalFrameDefault+0x6d5)[0x55a5b37d3935] python3(+0x169251)[0x55a5b37f9251] python3(PyObject_Call+0x122)[0x55a5b37f9f02] python3(_PyEval_EvalFrameDefault+0x2a49)[0x55a5b37d5ca9] python3(_PyFunction_Vectorcall+0x7c)[0x55a5b37eb6ac] python3(PyObject_Call+0x122)[0x55a5b37f9f02] python3(_PyEval_EvalFrameDefault+0x2a49)[0x55a5b37d5ca9] python3(+0x169251)[0x55a5b37f9251] python3(_PyEval_EvalFrameDefault+0x19b6)[0x55a5b37d4c16] python3(+0x140096)[0x55a5b37d0096] python3(PyEval_EvalCode+0x86)[0x55a5b38c5f66] python3(+0x260e98)[0x55a5b38f0e98] python3(+0x25a79b)[0x55a5b38ea79b] python3(+0x260be5)[0x55a5b38f0be5] python3(_PyRun_SimpleFileObject+0x1a8)[0x55a5b38f00c8] python3(_PyRun_AnyFileObject+0x43)[0x55a5b38efd13] python3(Py_RunMain+0x2be)[0x55a5b38e270e] python3(Py_BytesMain+0x2d)[0x55a5b38b8dfd] /lib/x86_64-linux-gnu/libc.so.6(+0x29d90)[0x7f42c8512d90] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80)[0x7f42c8512e40] python3(_start+0x25)[0x55a5b38b8cf5] Aborted (core dumped)
Has anyone else had this problem?
The text was updated successfully, but these errors were encountered:
from llama_cpp import Llama llm = Llama( model_path="/data/app/comfyui/ComfyUI/models/clip/t5/t5-v1_1-xxl-encoder-Q8_0.gguf", chat_format="llama-2" ) llm.create_chat_completion( messages = [ {"role": "system", "content": "You are an assistant who perfectly describes images."}, { "role": "user", "content": "Describe this image in detail please." } ] )
Sorry, something went wrong.
flux1-dev????????????
No branches or pull requests
llama_model_loader: loaded meta data with 32 key-value pairs and 219 tensors from /data/huggingface/hub/models--city96--t5-v1_1-xxl-encoder-gguf/snapshots/005a6ea51a7d0b84d677b3e633bb52a8c85a83d9/./t5-v1_1-xxl-encoder-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = t5encoder
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = T5 V1_1 Xxl
llama_model_loader: - kv 3: general.organization str = Google
llama_model_loader: - kv 4: general.finetune str = encoder-hf
llama_model_loader: - kv 5: general.basename str = t5-v1_1
llama_model_loader: - kv 6: general.size_label str = xxl
llama_model_loader: - kv 7: t5encoder.context_length u32 = 512
llama_model_loader: - kv 8: t5encoder.embedding_length u32 = 4096
llama_model_loader: - kv 9: t5encoder.feed_forward_length u32 = 10240
llama_model_loader: - kv 10: t5encoder.block_count u32 = 24
llama_model_loader: - kv 11: t5encoder.attention.head_count u32 = 64
llama_model_loader: - kv 12: t5encoder.attention.key_length u32 = 64
llama_model_loader: - kv 13: t5encoder.attention.value_length u32 = 64
llama_model_loader: - kv 14: t5encoder.attention.layer_norm_epsilon f32 = 0.000001
llama_model_loader: - kv 15: t5encoder.attention.relative_buckets_count u32 = 32
llama_model_loader: - kv 16: t5encoder.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 17: general.file_type u32 = 7
llama_model_loader: - kv 18: tokenizer.ggml.model str = t5
llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,32128] = ["", "", "", "▁", "X"...
llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,32128] = [0.000000, 0.000000, 0.000000, -2.012...
llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,32128] = [3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 23: tokenizer.ggml.add_space_prefix bool = true
llama_model_loader: - kv 24: tokenizer.ggml.remove_extra_whitespaces bool = true
llama_model_loader: - kv 25: tokenizer.ggml.precompiled_charsmap arr[u8,237539] = [0, 180, 2, 0, 0, 132, 0, 0, 0, 0, 0,...
llama_model_loader: - kv 26: tokenizer.ggml.eos_token_id u32 = 1
llama_model_loader: - kv 27: tokenizer.ggml.unknown_token_id u32 = 2
llama_model_loader: - kv 28: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 29: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 30: tokenizer.ggml.add_eos_token bool = true
llama_model_loader: - kv 31: general.quantization_version u32 = 2
llama_model_loader: - type f32: 50 tensors
llama_model_loader: - type q8_0: 169 tensors
llm_load_vocab: special tokens cache size = 3
llm_load_vocab: token to piece cache size = 0.2111 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = t5encoder
llm_load_print_meta: vocab type = UGM
llm_load_print_meta: n_vocab = 32128
llm_load_print_meta: n_merges = 0
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 512
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_layer = 24
llm_load_print_meta: n_head = 64
llm_load_print_meta: n_head_kv = 64
llm_load_print_meta: n_rot = 64
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 64
llm_load_print_meta: n_embd_head_v = 64
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 4096
llm_load_print_meta: n_embd_v_gqa = 4096
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 10240
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = -1
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 512
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = ?B
llm_load_print_meta: model ftype = Q8_0
llm_load_print_meta: model params = 4.76 B
llm_load_print_meta: model size = 4.71 GiB (8.50 BPW)
llm_load_print_meta: general.name = T5 V1_1 Xxl
llm_load_print_meta: EOS token = 1 ''
llm_load_print_meta: UNK token = 2 ''
llm_load_print_meta: PAD token = 0 ''
llm_load_print_meta: LF token = 3 '▁'
llm_load_print_meta: max token length = 20
llm_load_tensors: ggml ctx size = 0.10 MiB
llm_load_tensors: CPU buffer size = 4826.12 MiB
.................................................................................................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CPU KV buffer size = 192.00 MiB
llama_new_context_with_model: KV self size = 192.00 MiB, K (f16): 96.00 MiB, V (f16): 96.00 MiB
llama_new_context_with_model: CPU output buffer size = 0.12 MiB
llama_new_context_with_model: CPU compute buffer size = 234.00 MiB
llama_new_context_with_model: graph nodes = 845
llama_new_context_with_model: graph splits = 1
AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
Model metadata: {'tokenizer.ggml.eos_token_id': '1', 'general.quantization_version': '2', 'tokenizer.ggml.model': 't5', 'tokenizer.ggml.add_bos_token': 'false', 'tokenizer.ggml.remove_extra_whitespaces': 'true', 't5encoder.attention.layer_norm_rms_epsilon': '0.000001', 't5encoder.attention.relative_buckets_count': '32', 't5encoder.attention.layer_norm_epsilon': '0.000001', 'tokenizer.ggml.unknown_token_id': '2', 't5encoder.attention.value_length': '64', 'general.architecture': 't5encoder', 'general.file_type': '7', 't5encoder.context_length': '512', 't5encoder.feed_forward_length': '10240', 'tokenizer.ggml.padding_token_id': '0', 'general.basename': 't5-v1_1', 'tokenizer.ggml.pre': 'default', 'general.name': 'T5 V1_1 Xxl', 'general.finetune': 'encoder-hf', 't5encoder.attention.key_length': '64', 'general.type': 'model', 't5encoder.attention.head_count': '64', 'general.size_label': 'xxl', 'general.organization': 'Google', 't5encoder.embedding_length': '4096', 'tokenizer.ggml.add_eos_token': 'true', 'tokenizer.ggml.add_space_prefix': 'true', 't5encoder.block_count': '24'}
Using fallback chat format: llama-2
/tmp/pip-install-rx431hta/llama-cpp-python_78f9dcf2ce95424dbc2c1f7ebd107737/vendor/llama.cpp/src/llama.cpp:13908: GGML_ASSERT(lctx.is_encoding) failed
/usr/local/lib/python3.10/dist-packages/llama_cpp/lib/libggml.so(+0x1015b)[0x7f42c791a15b]
/usr/local/lib/python3.10/dist-packages/llama_cpp/lib/libggml.so(ggml_abort+0x15e)[0x7f42c791bd2e]
/usr/local/lib/python3.10/dist-packages/llama_cpp/lib/libllama.so(_ZN17llm_build_context16build_t5_encoderEv+0x11a0)[0x7f42c7b5ef90]
/usr/local/lib/python3.10/dist-packages/llama_cpp/lib/libllama.so(+0x80d92)[0x7f42c7ad7d92]
/usr/local/lib/python3.10/dist-packages/llama_cpp/lib/libllama.so(llama_decode+0x582)[0x7f42c7b35972]
/lib/x86_64-linux-gnu/libffi.so.8(+0x7e2e)[0x7f42c7e45e2e]
/lib/x86_64-linux-gnu/libffi.so.8(+0x4493)[0x7f42c7e42493]
/usr/lib/python3.10/lib-dynload/_ctypes.cpython-310-x86_64-linux-gnu.so(+0xa3e9)[0x7f42c7e603e9]
/usr/lib/python3.10/lib-dynload/_ctypes.cpython-310-x86_64-linux-gnu.so(+0x13302)[0x7f42c7e69302]
python3(_PyObject_MakeTpCall+0x25b)[0x55a5b37e152b]
python3(_PyEval_EvalFrameDefault+0x6f0b)[0x55a5b37da16b]
python3(_PyFunction_Vectorcall+0x7c)[0x55a5b37eb6ac]
python3(_PyEval_EvalFrameDefault+0x8cb)[0x55a5b37d3b2b]
python3(_PyFunction_Vectorcall+0x7c)[0x55a5b37eb6ac]
python3(_PyEval_EvalFrameDefault+0x8cb)[0x55a5b37d3b2b]
python3(+0x1785a2)[0x55a5b38085a2]
python3(_PyEval_EvalFrameDefault+0xac4)[0x55a5b37d3d24]
python3(+0x201a15)[0x55a5b3891a15]
python3(+0x15b909)[0x55a5b37eb909]
python3(_PyEval_EvalFrameDefault+0x6d5)[0x55a5b37d3935]
python3(+0x169251)[0x55a5b37f9251]
python3(PyObject_Call+0x122)[0x55a5b37f9f02]
python3(_PyEval_EvalFrameDefault+0x2a49)[0x55a5b37d5ca9]
python3(_PyFunction_Vectorcall+0x7c)[0x55a5b37eb6ac]
python3(PyObject_Call+0x122)[0x55a5b37f9f02]
python3(_PyEval_EvalFrameDefault+0x2a49)[0x55a5b37d5ca9]
python3(+0x169251)[0x55a5b37f9251]
python3(_PyEval_EvalFrameDefault+0x19b6)[0x55a5b37d4c16]
python3(+0x140096)[0x55a5b37d0096]
python3(PyEval_EvalCode+0x86)[0x55a5b38c5f66]
python3(+0x260e98)[0x55a5b38f0e98]
python3(+0x25a79b)[0x55a5b38ea79b]
python3(+0x260be5)[0x55a5b38f0be5]
python3(_PyRun_SimpleFileObject+0x1a8)[0x55a5b38f00c8]
python3(_PyRun_AnyFileObject+0x43)[0x55a5b38efd13]
python3(Py_RunMain+0x2be)[0x55a5b38e270e]
python3(Py_BytesMain+0x2d)[0x55a5b38b8dfd]
/lib/x86_64-linux-gnu/libc.so.6(+0x29d90)[0x7f42c8512d90]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80)[0x7f42c8512e40]
python3(_start+0x25)[0x55a5b38b8cf5]
Aborted (core dumped)
Has anyone else had this problem?
The text was updated successfully, but these errors were encountered: