-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path514.txt
4241 lines (4241 loc) · 166 KB
/
514.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
C AIRO U NIVERSITY
M ASTER T HESIS
Spatio-Temporal Resources Allocation
Using Data Mining Techniques
Author:
Mohammed Mostafa Ahmed
Supervisors:
Prof. Ehab Ezzat Hassanien
Prof. Aboul Ella Hassanien
Dr. Ayman Taha
A thesis submitted in fulfilment of the requirements
for the degree of Master in Information System
in the
Faculty of Computers and Information
Department of Information System
August 2017i
Abstract
Nowadays, many countries are suffering from the problem of poor distribution of re-
sources that serve the citizens. Our goal is finding best location for resources. In other
words, find the distribution of resources that minimize required resources. Examples of
resources that can make use of required solutions include hospitals, airports, sensors,
malls, schools, wireless sensors, mobile sensors and seismic stations in countries having
a non-uniform population density. We aim to allocate (localization) of resources in op-
timal locations that choose best location for resources to minimize number of resources
and maximize lifetime of this resources.
WSNs have many of applications including medical applications, highway monitoring,
habitat monitoring, military applications, environmental applications, and commercial
applications such as automated grocery checkout, personal health diagnosis, remote
controlled heating and lighting, etc. We present analysis and simulations of the al-
gorithms, demonstrating improved accuracy compared to other schemes although the
accuracy is probably not good enough for some high-end applications
In this thesis, we have made an attempt to address allocation (localization) of sensor
nodes in small and large-scale wireless sensor networks in order to target many of
objectives, some of objectives are minimize active nodes in wireless sensor networks
(WSNs) and determine minimum of multiple sink nodes in large-scale wireless sensor
networks (LSWSNs) using localization of sink nodes. Furthermore, after we determine
the best of location of sensor nodes and sink node for network, we perform transmis-
sion path between sink node and the rest of sensor nodes to find efficiently energy of
lowest cost paths among nodes and compared with similar topology algorithms. We
test extensive simulation on simulated WSNs randomly that show the potential of the
proposed topology management algorithm for identifying the lowest cost paths in order
to minimize energy consumption of network in order to prolong lifetime of WSNs and
all of experiments carried out using MATLAB that execute localization of sensor nodes
with clustering Integration with swarm optimization in order to produce best results for
localization of WSNs.Certification
I, Mohammed Mostafa Ahmed, certify that this thesis titled, “Spatio-Temporal Re-
sources Allocation Using Data Mining Techniques” and the work presented in it has
not been accepted in substance for any academic degree and is not being concurrently
submitted in candidature for any other degree. Any portion of thesis for which I am
indebted to other sources is mentioned and explicit references are given.
Signed:
Date:
iiAcknowledgements
First of all, All praises and thanks to Allah, who supplied me with the courage, the
guidance, and the love to complete my thesis. Also, I can not forget the assistance
of several individuals whose contributions are gratefully acknowledged. Without their
guidance, this thesis could not appear in its current format. I would like to thank my
supervisors, Prof. Ehab Ezzat Hassanien, Prof. Aboul Ella Hassanien, and Dr. Ayman
Taha for their patience and invaluable assistance. Also, i would like to thank all my
friends and my collages how had helped me along the way, especially my dear friend
Ahmed Hafez. Finally, I am grateful to my family ;my father, my mother, my wife, my
brother, and my sisters for their love, support and encouragement.
iiiiv
List of Publications
Published Papers:
1. Mohammed M. Ahmed, Essam H. Houssein, Aboul Ella Hassanien, Ayman Taha,
and Ehab Hassanien, Maximizing lifetime of Wireless Sensor Networks Based
on Whale Optimization Algorithm , In the 3rd International Conference on Ad-
vanced Intelligent Systems and Informatics (AISI2017). Sept. 9-11, 2017, Cairo-
Egypt, 2017.
Under submission Papers:
1. Mohammed M. Ahmed, Essam H. Houssein, Aboul Ella Hassanien, Ayman Taha,
Ehab Hassanien. Multi-Objective Whale Optimization Algorithm for Optimal
Multiple Sink Node Locations in Large-Scale Wireless Sensor Networks.
2. Mohammed M. Ahmed, Essam H. Houssein, Aboul Ella Hassanien, Ehab Has-
sanien, Ayman Taha. Multi-Objective Grasshopper Optimisation Algorithm for
Sink Node Localization in WSNs.Contents
Abstract i
Certification ii
Acknowledgements iii
List of Publications iv
List of Figures
viii
List of Tables x
Abbreviations xi
1 .
.
.
.
. 1
2
5
5
6
7
2
3
Introduction
1.1 Wireless Sensor Networks . . . . . .
1.2 Motivation . . . . . . . . . . . . . . .
1.3 Problem Definition . . . . . . . . . .
1.4 Thesis Objectives . . . . . . . . . . .
1.5 Thesis Contributions and Organization
.
.
.
.
.
.
.
.
.
.
Related Work
2.1 localization of wireless sensor networks .
2.2 Topology Control Protocols . . . . . . . .
2.3 Energy-Ware of wireless sensor networks
2.4 Clustering of wireless sensor networks . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
. .
.
.
. .
.
.
. .
.
.
. .
.
.
. .
.
.
. .
.
.
. .
.
.
. .
.
.
. 8
8
9
11
11
Literature Review of methodologies
3.1 Swarm optimization algorithms . . . . . . . . . . . . .
3.1.1 Single Swarm optimization . . . . . . . . . .
3.1.1.1 Whale Optimization Algorithm . . .
3.1.1.2 Shrinking encircling preys: . . . . .
3.1.1.3 Spiral bubble-net feeding maneuver:
3.1.1.4 Search for prey: . . . . . . . . . . .
3.1.2 Grasshopper Optimization Algorithm (GOA) .
3.1.3 multi-objective Swarm optimization . . . . . . .
.
.
.
.
.
.
. .
.
.
.
.
.
.
. .
.
.
.
.
.
.
. .
.
.
.
.
.
.
. .
.
.
.
.
.
.
. .
.
.
.
.
.
.
. .
.
.
.
.
.
.
. .
.
.
.
.
.
.
. .
.
.
.
.
.
.
. 12
13
13
13
14
14
15
15
18
v
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.vi
Contents
3.1.3.1
3.1.3.2
3.2
3.3
4
5
Multi-Objective Whale Optimization Algorithm . . .
Multi-Objective Grasshopper Optimization Algorithm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Mining Techniques . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1 Clustering Data Mining Technique . . . . . . . . . . . . . . . .
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximizing lifetime of Wireless Sensor Networks Based on WOA
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1 Topology Control Techniques . . . . . . . . . . . . . .
4.1.2 Network Model . . . . . . . . . . . . . . . . . . . . . .
4.1.3 Whale Optimization Algorithm . . . . . . . . . . . . .
4.1.3.1 Shrinking encircling preys: . . . . . . . . . .
4.1.3.2 Spiral bubble-net feeding maneuver: . . . . .
4.1.3.3 Search for prey: . . . . . . . . . . . . . . . .
4.2 The Proposed WOTC Algorithm . . . . . . . . . . . . . . . . .
4.3 Discussion and Comparison Analysis . . . . . . . . . . . . . .
4.3.1 Complexity Analysis . . . . . . . . . . . . . . . . . . .
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Multi-Objective Sink Node Localization
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Multi-Objective Whale Optimization Algorithm . . . . . . . . . . . .
5.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.1 Problem Description . . . . . . . . . . . . . . . . . . . . . .
5.5.2 Multi-Objective Optimization . . . . . . . . . . . . . . . . .
5.6 Proposed Multi-Objective Whale Optimization Algorithm (MOWOA)
5.6.1 Overview WOA . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.1.1 Shrinking encircling preys: . . . . . . . . . . . . .
5.6.1.2 Spiral bubble-net feeding maneuver: . . . . . . . .
5.6.1.3 Search for prey: . . . . . . . . . . . . . . . . . . .
5.6.2 Proposed MOWOA . . . . . . . . . . . . . . . . . . . . . . .
5.7 Experimental Results and Discussion . . . . . . . . . . . . . . . . . .
5.7.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.3 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . .
5.7.4 Comparison with Existing Studies . . . . . . . . . . . . . . .
5.8 summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.9 Multi-Objective Grasshopper Optimization Algorithm . . . . . . . .
5.10 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.11 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.12 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
18
18
18
18
.
.
.
.
.
.
.
.
.
.
. 19
20
20
22
23
23
24
24
25
28
33
34
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 36
36
37
37
39
41
41
42
43
43
43
44
44
45
48
49
51
56
60
60
61
62
64
66vii
Contents
5.12.1 Topology Control . . . . . . . . . . . . . . .
5.12.2 Network Model . . . . . . . . . . . . . . . .
5.12.3 Multi-Objective Optimization . . . . . . . .
5.12.4 Grasshopper Optimization Algorithm (GOA)
5.13 The proposed MOGOA . . . . . . . . . . . . . . . .
5.14 Experimental Results and Discussion . . . . . . . . .
5.14.1 The Localization Errors . . . . . . . . . . .
5.14.2 Evaluation criteria . . . . . . . . . . . . . .
5.14.3 Discussion . . . . . . . . . . . . . . . . . .
5.15 Summary . . . . . . . . . . . . . . . . . . . . . . .
6
.
.
.
.
.
.
.
.
.
. 66
66
68
69
71
76
79
81
82
86
Conclusion and Future Work
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
90
92
Bibliography
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
93List of Figures
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10 The flowchart of WOA optimized TC (WOTC). . . . . .
Topology results of the A3 and WOTC for 200 nodes. . .
Topology results of the A3 and WOTC for 400 nodes. . .
Topology results of the A3 and WOTC for 600 nodes. . .
Topology results of the A3 and WOTC for 800 nodes. . .
Topology results of the A3 and WOTC for 1000 nodes. .
Number of active nodes for A3 and WOTC . . . . . . .
Energy consumption for active nodes for A3 and WOTC.
Ratio of active nodes to the rest nodes . . . . . . . . . .
Average number of iterations required for convergence .
5.1
5.2 The flowchart of the proposed MOWOA. . . . . . . . . . . . . . . . . . 46
Sink positions with three algorithms MOWOA, MOGWO and MOPSO
for network 2000 nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 51
results of sink nodes for three algorithms. . . . . . . . . . . . . . . . . 52
Energy consumption for three algorithms MOWOA, MOGWO and MOPSO
for network 2000 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . 52
The fitness function convergence. . . . . . . . . . . . . . . . . . . . . . 52
Sink positions with three algorithm MOWOA, MOGWO and MOPSO
for network 2000 nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 54
results of sink nodes for three algorithms. . . . . . . . . . . . . . . . . 55
Energy consumption for three algorithms MOWOA, MOGWO and MOPSO
for network 2000 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . 55
The fitness function convergence. . . . . . . . . . . . . . . . . . . . . . 55
Mean fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Best fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Worst fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Mean fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Best fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Worst fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Schematic flowchart of MOGOA. . . . . . . . . . . . . . . . . . . . . 73
the structure of tree graph. . . . . . . . . . . . . . . . . . . . . . . . . 76
Location of sink node in network size 200. . . . . . . . . . . . . . . . . 78
Comparison of energy consumption. . . . . . . . . . . . . . . . . . . . 78
: The comparison of convergence rate between MOGOA, CSO, and PSO. 79
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
viii
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
26
30
30
31
31
31
32
32
33
34List of Figures
5.21
5.22
5.23
5.24
5.25
Localization errors with different network size. . . . . . . . . . . . . .
Comparison Results of evaluation criteria. . . . . . . . . . . . . . . . .
Average Time for 3 algorithms per second (s). . . . . . . . . . . . . . .
Behavior of MOGOA on the 2D benchmark. . . . . . . . . . . . . . . .
Best Pareto optimal front obtained by the proposed multi-objective al-
gorithm with 2 objectives for 5 datasets. . . . . . . . . . . . . . . . . .
ix
80
82
83
88
89List of Tables
4.1
4.2
4.3
4.4 Atarraya simulation parameter. . . . . . . . . . .
Results obtained from the A3 algorithm. . . . . .
Results obtained from the WOTC algorithm. . . .
Comparison WOTC algorithm with other studies. .
.
.
. 29
29
30
33
5.1
5.2 Simulation setting parameter. . . . . . . . . . . . . . . . . . . . . . . .
Experimental results obtained from first fitness function for the pro-
posed algorithm MOWOA vs MOGWO and MOPSO algorithms. . . . .
Experimental results obtained from second fitness function for the pro-
posed algorithm MOWOA vs MOGWO and MOPSO algorithms. . . . .
Mean fitness function obtained from the different algorithms. . . . . . .
Best fitness function obtained from the different algorithms. . . . . . .
Worst fitness function obtained from the different algorithms. . . . . . .
Mean fitness function obtained from the different algorithms. . . . . . .
Best fitness function obtained from the different algorithms. . . . . . .
Worst fitness function obtained from the different algorithms. . . . . . .
Comparison MOWOA algorithm with other studies. . . . . . . . . . . .
Simulation parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Comparison of Energy Consumption for three algorithms MOGOA,
CSO and PSO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Localization errors with a different node number. . . . . . . . . . . . .
summary of the experimental results. . . . . . . . . . . . . . . . . . . .
AverageTime per second (s). . . . . . . . . . . . . . . . . . . . . . . .
Comparison MOGOA algorithm with other studies of sink node posi-
tioning approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
x
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
49
53
57
57
57
58
59
59
61
76
77
80
82
83
86Abbreviations
WSNs Wireless Sensor Networks
LSWSNs Large-Scale Wireless Sensor Networks
WOA Whale Optimization Algorithm
GOA Grasshopper Optimization Algorithm
PSO Particle Swarm Optimization
CSO Cat Swarm Optimization
MOO Multi-Objective Optimization
MOWOA Multi-Objective Whale Optimization Algorithm
MOGOA Multi-Objective Grasshopper Optimization Algorithm
MOPSO Multi-Objective Particle Swarm Optimization
MOGWO Multi-Objective Grey Wolf Optimization
MST Minimum Spanning Tree
TC Topology Control
ML Machine Learning
NSGA-II Non-dominated Sorting Genetic Algorithm
xiChapter 1
Introduction
In this chapter, we indicate description of wireless sensor networks (WSNs). The devel-
opment of (WSNs) has been Growing rapidly and is considered an important area for
the creation of new types of applications. WSNs composed of a large number of small
sensor nodes that monitor their environment, process data if necessary (using micropro-
cessors) and send/receive processed data to/from other sensor nodes. All sensor nodes
in network are connected to a sink node in central networks or to other sensing nodes via
a network. the central sink node collects data from all sensor nodes to be used by user.
In many cases, the sink is also capable of activating sensor nodes by broadcasting, by
sending network policy and control information. For WSNs, we have proposed many of
localization techniques with swarm optimization such as Whale Optimization Topology
Control (WOTC), multiple sink node localization using Multi-objective Whale Opti-
mization Algorithm (MOWOA) and Grasshopper Optimzation Algorithm (MOGOA).
In WOTC, we convert whale optimization algorithm into binary version because we
deal with discrete data of sensor nodes in wireless sensor network that obtain 1 de-
scribe active node and 0 describe inactive node in topology network, we use MOWOA
to choose best of multiple sink nodes locations in large scale WSN in order to overcome
two objectives are minimize energy consumption and reduce number of sink nodes to
maximize lifetime of the network. In this chapter, we illustrate overview for wireless
sensor networks.
1Chapter 1. Introduction
1.1
2
Wireless Sensor Networks
Wireless Sensor Networks (WSNs) contain large numbers of small nodes including
a power source, limited memory, communication resources, computational and Sink
Node (SN). Monitoring condition of environmental and gathering information about
the physical environment and send data to gateway of sensor networks that called sink
node. SN has a very large storage and large data processing capabilities. SK is re-
sponsible for receiving data from sensor nodes to the server from where end-user can
access them. The sensors nodes are deployed around the area of the Sink Node and
form groups as per the need of the Sink Node, that are restricted in terms of memory,
energy, computational and transmission power, WSNs are seen as a potentially versa-
tile, tool that use in measurements or monitoring of diverse phenomena is inexpensive
tool. WSNs have various of applications and WSNs issues will illustrate in next section
in detailed.
Wireless Sensor Networks Applications
WSNs applications have increased in recent times in fields such as area monitoring, en-
vironmental sensing, detection forest fires, monitoring air pollution, detection of land-
slide, and monitoring of machine health. In such applications, secure communication is
considered one of the important need among sensor nodes. Wireless sensor network ap-
plications are introduces a wide area of possible applications. Some of many examples
of such applications are:
1. Agriculture - Monitoring the moisture of ground and air temperature can optimize
automated irrigation systems. Systems aware of measurements provided by such
a network are able to determine the amount of water to be used for each area of
irrigation separately. [22, p. 36]
2. Active volcano monitoring - WSN can facilitate the monitoring of active vol-
canos. Concerning the self-organization of WSN sensor nodes, it is easy to deploy
and maintain large number of sensor nodes over volcano, which makes it possibleChapter 1. Introduction
3
to achieve a high spatial diversity data. Analysis of such data may help predict
volcano activity providing more time for evacuation process. [22, p. 38-39]
3. Structure health monitoring - Monitoring health of structures like buildings or
bridges can prevent structure collapse, possibly saving lives by localizing damage
on the structure. [22, p. 17] Traffic control - nodes gather data about speed
and number of vehicles on roads. Systems conscious of such data can propose
alternative routes or ideal speed for cars which may eliminate or at least reduce
traffic jams. [22, p. 26]
4. Pipeline monitoring - Although a sensor node itself has short transmitting range,
it is possible to create a chain from many sensor nodes which can span hundreds
of kilometers of pipe. By measuring pressure it is possible to locate damage or
leak on the pipe. [22, p. 35]
5. Industrial data logging - measurement of industrial processes can optimize quality
assurance of products. For example brick quality depends on the right tempera-
ture and pressure in smelter. When one of these values deviates, system can warn
operating staff or even interrupt the process preventing economic loss. [29]
Key Issues in Wireless Sensor Networks
There are many of the important issues in WSNs are stated below:
1. Energy Efficiency: WSNs consist of Sensor nodes that have limited battery ca-
pacity. This considered a constraint for some of applications and on the lifetime
of sensor node. There are many of sources of battery drainage composed of:
continuous sensing, transmission and reception modes of radio. thence, in order
to increase the network lifetime in unattended environments, efficient algorithms
should be developed at each layer of WSN in concern with the less energy uti-
lization. This includes techniques of data compression, data fusion (removal of
data redundancy), rotation of cluster heads, and adaptive mechanisms for radio
operations.Chapter 1. Introduction
4
2. Routing: WSN changes too frequently; as new nodes are added or die due to little
resources. Thus, in order to increase the coverage, connectivity, and remain up-
dated of network topology, neighbor information should be disseminated timely.
Furthermore, node that transmit should identify the best reliable shortest path to
the sink node/base station. Therefore, routing serves as a bottleneck in overall
efficiency of WSN.
3. Synchronization Time: Sensor Nodes have Synchronizing time that serves as a
basic prerequisite for various applications and protocols such as Time difference
of arrival (TDoA), Time division multiple access (TDMA), Time of arrival (ToA)
and so on. Basic property of WSNs, i.e., co-operation in communication, compu-
tation, sensing and actuation of different nodes solely depends on the time syn-