-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathgenerate_tfrecord.py
88 lines (75 loc) · 3.36 KB
/
generate_tfrecord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import io
import pandas as pd
import tensorflow as tf
from PIL import Image
from object_detection.utils import dataset_util
from object_detection.utils import label_map_util
from collections import namedtuple
import argparse
def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
def create_tf_example(group, path, category_idx):
with tf.io.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size
filename = group.filename.encode('utf8')
image_format = b'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
for index, row in group.object.iterrows():
xmins.append(float(row['xmin']) / width)
xmaxs.append(float(row['xmax']) / width)
ymins.append(float(row['ymin']) / height)
ymaxs.append(float(row['ymax']) / height)
classes_text.append(row['class'].encode('utf8'))
classes.append(category_idx[row['class']])
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Generating tfrecords from images and csv file")
parser.add_argument("--path_to_images", type=str, help="folder that contains images",
default="data/train/images")
parser.add_argument("--path_to_annot", type=str, help="full path to annotations csv file",
default="annotations.csv")
parser.add_argument("--path_to_label_map", type=str, help="full path to label_map file",
default="label_map.pbtxt")
parser.add_argument("--path_to_save_tfrecords", type=str, help="This path is for saving the generated tfrecords",
default="data/myrecord.record")
args = parser.parse_args()
csv_path = args.path_to_annot
images_path = args.path_to_images
print("images path : ", images_path)
print("csv path : ", csv_path)
print("path to output tfrecords : ", args.path_to_save_tfrecords)
label_map_dict = label_map_util.get_label_map_dict(args.path_to_label_map)
writer = tf.io.TFRecordWriter(args.path_to_save_tfrecords)
examples = pd.read_csv(csv_path)
print("Generating tfrecord .... ")
grouped = split(examples, 'filename')
for group in grouped:
tf_example = create_tf_example(group, images_path, label_map_dict)
writer.write(tf_example.SerializeToString())
writer.close()
print('Successfully created the TFRecords: {}'.format(args.path_to_save_tfrecords))