-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelsarticle-template-num.bbl
123 lines (98 loc) · 5.36 KB
/
elsarticle-template-num.bbl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
\begin{thebibliography}{10}
\expandafter\ifx\csname url\endcsname\relax
\def\url#1{\texttt{#1}}\fi
\expandafter\ifx\csname urlprefix\endcsname\relax\def\urlprefix{URL }\fi
\expandafter\ifx\csname href\endcsname\relax
\def\href#1#2{#2} \def\path#1{#1}\fi
\bibitem{torget2011mapping}
A.~J. Torget, R.~Mihalcea, J.~Christensen, G.~McGhee, Mapping texts: Combining
text-mining and geo-visualization to unlock the research potential of
historical newspapers.
\bibitem{palfray2012logical}
T.~Palfray, D.~Hebert, S.~Nicolas, P.~Tranouez, T.~Paquet, Logical segmentation
for article extraction in digitized old newspapers, in: Proceedings of the
2012 ACM symposium on Document engineering, ACM, 2012, pp. 129--132.
\bibitem{mcmurdo2013vermont}
T.~McMurdo, B.~MacLennan, The vermont digital newspaper project and the
national digital newspaper program, Library Resources \& Technical Services
57~(3) (2013) 148--163.
\bibitem{singh2012survey}
A.~Singh, K.~Bacchuwar, A.~Bhasin, A survey of ocr applications, International
Journal of Machine Learning and Computing 2~(3) (2012) 314--318.
\bibitem{dutta2011learning}
H.~Dutta, R.~J. Passonneau, A.~Lee, A.~Radeva, B.~Xie, D.~L. Waltz, B.~Taranto,
Learning parameters of the k-means algorithm from subjective human
annotation., in: FLAIRS Conference, 2011.
\bibitem{yang2011topic}
T.-I. Yang, A.~J. Torget, R.~Mihalcea, Topic modeling on historical newspapers,
in: Proceedings of the 5th ACL-HLT Workshop on Language Technology for
Cultural Heritage, Social Sciences, and Humanities, Association for
Computational Linguistics, 2011, pp. 96--104.
\bibitem{kukich1992techniques}
K.~Kukich, Techniques for automatically correcting words in text, ACM Computing
Surveys (CSUR) 24~(4) (1992) 377--439.
\bibitem{strohmaier2003lexical}
C.~M. Strohmaier, C.~Ringlstetter, K.~U. Schulz, S.~Mihov, Lexical
postcorrection of ocr-results: The web as a dynamic secondary dictionary?,
in: ICDAR, Citeseer, 2003, pp. 1133--1137.
\bibitem{ringlstetter2007text}
C.~Ringlstetter, M.~Hadersbeck, K.~U. Schulz, S.~Mihov, Text correction using
domain dependent bigram models from web crawls, in: Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI-2007)
Workshop on Analytics for Noisy Unstructured Text Data, 2007.
\bibitem{elmi1998spelling}
M.~A. Elmi, M.~Evens, Spelling correction using context, in: Proceedings of the
36th Annual Meeting of the Association for Computational Linguistics and 17th
International Conference on Computational Linguistics-Volume 1, Association
for Computational Linguistics, 1998, pp. 360--364.
\bibitem{bassil2012ocr}
Y.~Bassil, M.~Alwani, Ocr context-sensitive error correction based on google
web 1t 5-gram data set, arXiv preprint arXiv:1204.0188.
\bibitem{tong1996statistical}
X.~Tong, D.~A. Evans, A statistical approach to automatic ocr error correction
in context, in: Proceedings of the fourth workshop on very large corpora,
1996, pp. 88--100.
\bibitem{brill2000improved}
E.~Brill, R.~C. Moore, An improved error model for noisy channel spelling
correction, in: Proceedings of the 38th Annual Meeting on Association for
Computational Linguistics, Association for Computational Linguistics, 2000,
pp. 286--293.
\bibitem{agarwal2013utilizing}
S.~Agarwal, Utilizing big data in identification and correction of ocr errors.
\bibitem{wagner1974string}
R.~A. Wagner, M.~J. Fischer, The string-to-string correction problem, Journal
of the ACM (JACM) 21~(1) (1974) 168--173.
\bibitem{christen2006comparison}
P.~Christen, A comparison of personal name matching: Techniques and practical
issues, in: Data Mining Workshops, 2006. ICDM Workshops 2006. Sixth IEEE
International Conference on, IEEE, 2006, pp. 290--294.
\bibitem{marzal1993computation}
A.~Marzal, E.~Vidal, Computation of normalized edit distance and applications,
Pattern Analysis and Machine Intelligence, IEEE Transactions on 15~(9) (1993)
926--932.
\bibitem{schulz2002fast}
K.~U. Schulz, S.~Mihov, Fast string correction with levenshtein automata,
International Journal on Document Analysis and Recognition 5~(1) (2002)
67--85.
\bibitem{taghva2001ocrspell}
K.~Taghva, E.~Stofsky, Ocrspell: an interactive spelling correction system for
ocr errors in text, International Journal on Document Analysis and
Recognition 3~(3) (2001) 125--137.
\bibitem{rice1996measuring}
S.~V. Rice, Measuring the accuracy of page-reading systems, Ph.D. thesis,
University of Nevada (1996).
\bibitem{reynaert2011character}
M.~W. Reynaert, Character confusion versus focus word-based correction of
spelling and ocr variants in corpora, International Journal on Document
Analysis and Recognition (IJDAR) 14~(2) (2011) 173--187.
\bibitem{kolak2002ocr}
O.~Kolak, P.~Resnik, Ocr error correction using a noisy channel model, in:
Proceedings of the second international conference on Human Language
Technology Research, Morgan Kaufmann Publishers Inc., 2002, pp. 257--262.
\bibitem{levenshtein1966binary}
V.~I. Levenshtein, Binary codes capable of correcting deletions, insertions and
reversals, in: Soviet Physics Doklady, Vol.~10, 1966, p. 707.
\bibitem{reynaert2008all}
M.~Reynaert, All, and only, the errors: more complete and consistent spelling
and ocr-error correction evaluation., in: LREC, 2008.
\end{thebibliography}