forked from mnmastro/CoxeterGroups
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCoxeterGroups.m2
239 lines (177 loc) · 5.58 KB
/
CoxeterGroups.m2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
-- -*- coding: utf-8 -*-
newPackage(
"CoxeterGroups",
Version => "0.1",
Date => "July 15, 2023",
Authors => {
{Name => "Matthew Mastroeni",
Email => "[email protected]",
HomePage => "https://mnmastro.github.io/"
}
},
Headline => "Coxeter groups",
AuxiliaryFiles => true,
DebuggingMode => true,
PackageExports => {
"Cyclotomic",
"SimplicialComplexes",
"Graphs",
"Posets",
"Matroids"
}
)
-- REFERENCES
-----------------------------------------------------------------
-- [BES] = S. Backman, C. Eur, and C. Simpson.
-- Simplicial generation of Chow rings of matroids.
-- arXiv:1905.07114 [math.CO]
-- [Ox] = J. Oxley. Matroid theory. Second edition.
-- Oxford Graduate Texts in Mathematics, 21.
-- Oxford University Press, Oxford, 2011.
-- Record any symbols or functions (except "net") used in each file below.
-- Comment out the name of the function/symbol if it is not exported.
-- Type names must be exported if they are used in the documentation
-- of an overloaded function.
-- ?? = undocumented
-- ** = tested
-- ++ = double checked
-- QUESTIONS:
-- 1. Is there an algorithm to determine when 2 elements are conjugates?
-- 2. Are there characterizations of finitely generated/finite subgroups?
-- 3. Which Coxeter groups have finitely many roots/reflections?
-- Is there an algorithm to find them all?
-- Or is there an algorithm to recognize reflections?
-- (re: error-checking for implementing reflection subgroups)
-- TO DO:
-- 1. Implement:
-- 1A. bruhatInterval
-- 1B. quotient(Subgroup) and CoxeterGroup/Subgroup
-- 2. Finish documentation:
-- 2A. dynkinDiagram
-- 2B. tableau
-- 2C. parabolicSubgroup
-- 2D. nerveComplex
-- 2E. poincare(CoxeterGroup)
export {
--CoxeterSystems.m2
"AllReflections", -- option, ??
"bruhatCompare", -- documented
"bruhatInterval", -- ??
"bruhatPoset", -- documented
"cartanMatrix", -- documented
"coxeterGroup", -- documented
"descentSet", -- documented
"dihedralGroup", -- documented
"dynkinDiagram", -- ??
"exchanges", -- documented
"expressions", -- ??
-- generators, -- overloaded, ??
"generatorSymbols", -- ??
"group", -- documented
"groupElements", -- documented
"groupOrder", -- documented
"hasType", -- ??
"hyperoctahedralGroup", -- documented
-- id, -- overloaded, ??
"isCoxeterMatrix", -- documented
"isFiniteGroup", -- documented
"isRightAngled", -- documented
"isReduced", -- ??
-- length, -- overloaded, documented
"longWord", -- documented
"nerveComplex", -- ??
"normalForm", -- ??
-- numgens, -- overloaded, ??
"permutationAction", -- ??
"parabolic", -- ??
"parabolicSubgroup", -- ??
-- poincare -- overloaded, ??
"reduceWord", -- ??
"reflections", -- documented
"reflectionRep", -- documented
"reflectionRepresentatives", -- ??
-- roots, -- overloaded, documented
"rootPairs", -- ??
"rows", -- ??
"sign", -- documented
"specificCoxeterGroup", -- documented
"specificDynkin", -- documented
"symmetricGroup", -- documented
"tableau", -- ??
"weakCompare", -- ??
"weakInterval", -- ??
"weakLattice", -- ??
"weights", -- ??
"wordToGroup"
}
--exportMutable {}
-------------------------------------------
--- LOAD AUXILIARY FILES ------------------
-------------------------------------------
load "./CoxeterGroups/CoxeterSystems.m2"
beginDocumentation()
load "./CoxeterGroups/CoxeterSystemsDoc.m2"
undocumented {
(net, CoxeterGroup),
}
-- TESTS
--load "./LatticeChowRings/LatticeChowRingsTests.m2"
end
-- Here place M2 code that you find useful while developing this
-- package. None of it will be executed when the file is loaded,
-- because loading stops when the symbol "end" is encountered.
restart
uninstallPackage "CoxeterGroups"
installPackage "CoxeterGroups"
check CoxeterGroups
restart
loadPackage "CoxeterGroups"
/// EXAMPLE
restart
load "CoxeterGroups.m2"
W = symmetricGroup 3
s_0^2
s_1*s_0*s_1
s_0*s_1*s_0*s_1
s_0*s_1*s_0*s_1*s_0
s_0*s_1*s_0*s_1*s_0*s_1
s_1^2
s_1*s_0*s_1*s_0
s_1*s_0*s_1*s_0*s_1
s_1*s_0*s_1*s_0*s_1*s_0
///
/// EXAMPLE
restart
load "CoxeterGroups.m2"
D = dihedralGroup 6
r = s*t
groupOrder r
-- (s*t)^4 = 1
r^2 == id_D
r^3 == id_D
r^4 == id_D
w = {s,t,s,t,s,t}
S = gens D
rep = reflectionRep D
pos = t -> first select(numgens D, j -> S#j == t);
V = target cartanMatrix D
w' = wordToGroup(reducedExpression product drop(w, -1), D)
w = w'|{last w}
drops = lengthDrops(w, D)
w = drop(w', {first drops, first drops})
l = #w - 1;
drops = flatten apply(l, i -> (
--w' := drop(w, -1);
v := (rep product drop(w', i))_(pos last w);
apply(select(pos w'#i, j -> (id_V)_j == v ), j -> (i, j) )
) )
if #drops > 0 then (
(i, j) := first drops;
--w' = drop(w, -1);
w = take(w', i)|{S#j}|drop(w', i)
);
apply(w, s -> first reducedExpression s)
s*t*s*t*s*t*s
s*t*s*t*s*t*s*t
groupOrder r
///