-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet.py
104 lines (88 loc) · 3.42 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright (c) Chris Choy ([email protected]).
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
# of the Software, and to permit persons to whom the Software is furnished to do
# so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Please cite "4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural
# Networks", CVPR'19 (https://arxiv.org/abs/1904.08755) if you use any part
# of the code.
import torch
import MinkowskiEngine as ME
import MinkowskiEngine.MinkowskiFunctional as MF
class UNet(ME.MinkowskiNetwork):
def __init__(self, in_nchannel, out_nchannel, D):
super(UNet, self).__init__(D)
self.block1 = torch.nn.Sequential(
ME.MinkowskiConvolution(
in_channels=in_nchannel,
out_channels=8,
kernel_size=3,
stride=1,
dimension=D),
ME.MinkowskiBatchNorm(8))
self.block2 = torch.nn.Sequential(
ME.MinkowskiConvolution(
in_channels=8,
out_channels=16,
kernel_size=3,
stride=2,
dimension=D),
ME.MinkowskiBatchNorm(16),
)
self.block3 = torch.nn.Sequential(
ME.MinkowskiConvolution(
in_channels=16,
out_channels=32,
kernel_size=3,
stride=2,
dimension=D),
ME.MinkowskiBatchNorm(32))
self.block3_tr = torch.nn.Sequential(
ME.MinkowskiConvolutionTranspose(
in_channels=32,
out_channels=16,
kernel_size=3,
stride=2,
dimension=D),
ME.MinkowskiBatchNorm(16))
self.block2_tr = torch.nn.Sequential(
ME.MinkowskiConvolutionTranspose(
in_channels=32,
out_channels=16,
kernel_size=3,
stride=2,
dimension=D),
ME.MinkowskiBatchNorm(16))
self.conv1_tr = ME.MinkowskiConvolution(
in_channels=24,
out_channels=out_nchannel,
kernel_size=1,
stride=1,
dimension=D)
def forward(self, x):
out_s1 = self.block1(x)
out = MF.relu(out_s1)
out_s2 = self.block2(out)
out = MF.relu(out_s2)
out_s4 = self.block3(out)
out = MF.relu(out_s4)
out = MF.relu(self.block3_tr(out))
out = ME.cat(out, out_s2)
out = MF.relu(self.block2_tr(out))
out = ME.cat(out, out_s1)
return self.conv1_tr(out)