-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegmentation_ddp.py
304 lines (239 loc) · 9.49 KB
/
segmentation_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# -*- coding: utf-8 -*-
"""_summary_
Returns:
_type_: _description_
"""
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1, 2, 3"
# os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
import yaml
import wandb
import argparse
import numpy as np
from tqdm import tqdm
from datetime import datetime as dt
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing as mp
from torch.distributed import init_process_group, destroy_process_group, barrier
from kitti_dataloader import SemenaticKITTIDataset
from torchmetrics.classification import MulticlassJaccardIndex
import MinkowskiEngine as ME
from minkunet import MinkUNet34C
# from sklearn.metrics import jaccard_score, confusion_matrix
SEMANTIC_KITTI_PATH = "semantic_KITTI/dataset/"
def read_yaml(path):
"""
"""
content = []
with open(path, "r") as stream:
content = yaml.safe_load(stream)
return content
def collate_fn(batch) -> dict:
"""
"""
coords, feats, labels = list(zip(*batch))
coords_batch = ME.utils.batched_coordinates(coords)
feats_batch = torch.from_numpy(np.concatenate(feats, 0)).float()
labels_batch = torch.from_numpy(np.concatenate(labels, 0))
return coords_batch, feats_batch, labels_batch
def make_checkpoint(epoch, net_state_dict, optimizer_state_dict) -> dict:
checkpoint = {
"model": "Unet",
"epoch": epoch + 1,
"model_state_dict": net_state_dict,
"optimizer_state_dict": optimizer_state_dict,
}
return checkpoint
def setup(gpu, config):
init_process_group(
backend="nccl",
init_method=config.dist_url,
world_size=config.world_size,
rank=gpu
)
torch.cuda.set_device(gpu)
def cleanup():
barrier()
destroy_process_group()
def train(config, start_epoch, train_dataloader, net, optimizer, criterion, device, run):
now = dt.now().strftime('%Y%m%d%H%M%S')
net.train()
# torch.autograd.set_detect_anomaly(True)
for epoch in tqdm(range(start_epoch, config.max_epochs)):
train_dataloader.sampler.set_epoch(epoch)
pbar = tqdm(train_dataloader)
for i, data in enumerate(pbar):
coords, feats, labels = data
labels = labels.to(device)
out = net(ME.SparseTensor(feats, coords, device=device))
optimizer.zero_grad()
loss = criterion(out.F, labels.long())
loss.backward()
optimizer.step()
pbar.set_postfix({
"loss": loss.item()
})
run.log({
"loss": loss.item()
})
del coords, feats, labels, out, loss
torch.cuda.empty_cache()
if config.save_checkpoint and torch.distributed.get_rank() == 0:
torch.save(
make_checkpoint(epoch, net.state_dict(), optimizer.state_dict()),
os.path.join("scripts", "warmup", "checkpoints", f"{now}_checkpoint_{epoch}.pt")
)
def eval(config, val_dataloader, net, criterion, device, run):
# net.eval()
miou_array = np.array([])
jaccard = MulticlassJaccardIndex(num_classes=19, average="micro", ignore_index=-100).to(device)
torch.no_grad()
pbar = tqdm(val_dataloader)
for i, data in enumerate(pbar):
coords, feats, labels = data
labels = labels.to(device)
out = net(ME.SparseTensor(feats, coords, device=device))
# loss = criterion(out.F, labels.long()).item()
pred = torch.argmax(torch.transpose(out.F, 0, 1), dim=0)
# print(pred.min(), labels.long().min())
miou = jaccard(pred, labels.long()).item() # TODO: Bincount Error
np.append(miou_array, [miou])
pbar.set_postfix({
"mIoU": miou
})
run.log({
"mIoU": miou
})
del coords, feats, labels, out, loss
torch.cuda.empty_cache()
wandb.log({
"min mIoU": np.min(miou_array),
"max mIoU": np.max(miou_array),
"average mIoU": np.mean(miou_array)
})
def main_worker(gpu, config, run):
"""
1. [SOLVED] yaml 읽어서 label 및 train, val 구분
2. [SOLVED] Unet 생성 (6 짰으면) weight load, 아니면 새로 생성
3. [SOLVED] train, val dataset 선언
3.1. [SOLVED] collate_fn
3.2. [SOLVED] noise 제거
4. [SOLVED] dataset load 선언
4.1. [SOLVED] voxel size divid
4.2. [SOLVED] Quntitize Error 해결
5. [SOLVED] Adam optim 선언
6. [SOLVED] (container 터질수도 있으니) 일정 epoch마다 weight 임시저장
7. [SOLVED] sequence 마다 epoch, scene 8(4, 2)개 묶어서 minibatch
8. [SOLVED] sparse tensor로 data load하고 feed forwawrd
8.1 [WIP] DDP
9. [SOLVED] CE loss 계산 (scene마다 label과 어케 연산할지 생각해야함)
10. [SOLVED] backprop
11. [SOLVED] val에서 scene마다 mIoU 계산
12. [SOLVED] WandB 연결
"""
setup(gpu, config)
device = torch.device(f"cuda:{gpu}")
content = read_yaml(os.path.join(SEMANTIC_KITTI_PATH, "semantic-kitti.yaml"))
net = MinkUNet34C(
3, # In nchannel
19, # Out nchannel (1 ~ 19)
D=3 # Dimention
).to(device)
# wrap with DDP
net = torch.nn.SyncBatchNorm.convert_sync_batchnorm(net)
net = DDP(net, device_ids=[gpu])
optimizer = optim.Adam(
params=net.parameters(),
lr=config.lr,
weight_decay=config.weight_decay
)
criterion = torch.nn.CrossEntropyLoss(ignore_index=-100).to(device)
# Load checkpoint if exists
if config.load_checkpoint:
checkpoint = torch.load(os.path.join("scripts", "warmup", "log", config.checkpoint_name))
net.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch']
else:
start_epoch = 0
# train if necessary
if config.is_train:
train_dataset = SemenaticKITTIDataset(
SEMANTIC_KITTI_PATH,
content['split']['train'],
'train',
content['learning_map'],
voxel_size=config.voxel_size
)
train_sampler = DistributedSampler(
dataset=train_dataset,
shuffle=True
)
train_dataloader = DataLoader(
dataset=train_dataset,
batch_size=int(config.batch_size / config.ngpus_per_node),
collate_fn=collate_fn,
shuffle=False,
num_workers=int(config.num_workers / config.ngpus_per_node),
sampler=train_sampler,
pin_memory=True
)
train(config, start_epoch, train_dataloader, net, optimizer, criterion, device, run)
cleanup()
# evaluate mIoU
val_dataset = SemenaticKITTIDataset(
SEMANTIC_KITTI_PATH,
content['split']['valid'],
'val',
content['learning_map'],
voxel_size=config.voxel_size
)
val_sampler = DistributedSampler(
dataset=val_dataset,
shuffle=True
)
val_dataloader = DataLoader(
dataset=val_dataset,
batch_size=1,
collate_fn=collate_fn,
shuffle=False,
num_workers=int(config.num_workers / config.ngpus_per_node),
pin_memory=True,
sampler=val_sampler
)
eval(config, val_dataloader, net, criterion, device, run)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', dest='data_path', default=SEMANTIC_KITTI_PATH, type=str)
parser.add_argument('--batch_size', dest='batch_size', default=2*3, type=int) # Batch size
parser.add_argument('--max_epochs', dest='max_epochs', default=20, type=int) # Max epochs
parser.add_argument('--lr', dest='lr', default=0.001, type=float) # Learning rate
parser.add_argument('--weight_decay', dest='weight_decay', type=float, default=1e-4) # Optimizer weight decay
parser.add_argument('--voxel_size', dest='voxel_size', type=float, default=0.05)
parser.add_argument('--is_train', dest='is_train', type=bool, default=True)
parser.add_argument('--save_checkpoint', dest='save_checkpoint', type=bool, default=True)
parser.add_argument('--num_workers', dest='num_workers', type=int, default=96)
parser.add_argument('--load_checkpoint', dest='load_checkpoint', type=bool, default=False)
parser.add_argument('--checkpoint_name', dest='checkpoint_name', type=str, default="20230730080852_checkpoint_6.pt")
parser.add_argument('--wandb_project_name', dest='wandb_project_name', type=str, default="SemanticKITTI semantic segmentation")
parser.add_argument('--ngpus_per_node', dest='ngpus_per_node', type=int, default=3)
parser.add_argument('--world_size', dest='world_size', type=int, default=3)
parser.add_argument('--dist_url', dest='dist_url', type=str, default="tcp://127.0.0.1:29500")
now = dt.now().strftime('%Y%m%d%H%M%S')
config = parser.parse_args()
run = wandb.init(
project=config.wandb_project_name,
notes=f"date: {now}",
group="DDP"
)
run.config.update(config)
mp.spawn(
main_worker,
args=(config, run),
nprocs=config.ngpus_per_node,
join=True
)