-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
182 lines (157 loc) · 8.03 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from nets.frcnn import FasterRCNN
from nets.frcnn_training import Generator
from torch.autograd import Variable
from trainer import FasterRCNNTrainer
import time
import numpy as np
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
from tqdm import tqdm
from torch.utils.data import DataLoader
from utils.dataloader import FRCNNDataset, frcnn_dataset_collate
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def fit_ont_epoch(net,epoch,epoch_size,epoch_size_val,gen,genval,Epoch):
train_util = FasterRCNNTrainer(net,optimizer)
total_loss = 0
rpn_loc_loss = 0
rpn_cls_loss = 0
roi_loc_loss = 0
roi_cls_loss = 0
val_toal_loss = 0
with tqdm(total=epoch_size,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
for iteration, batch in enumerate(gen):
if iteration >= epoch_size:
break
imgs,boxes,labels = batch[0], batch[1], batch[2]
with torch.no_grad():
imgs = Variable(torch.from_numpy(imgs).type(torch.FloatTensor)).cuda()
boxes = [Variable(torch.from_numpy(box).type(torch.FloatTensor)).cuda() for box in boxes]
labels = [Variable(torch.from_numpy(label).type(torch.FloatTensor)).cuda() for label in labels]
losses = train_util.train_step(imgs, boxes, labels, 1)
rpn_loc, rpn_cls, roi_loc, roi_cls, total = losses
total_loss += total
rpn_loc_loss += rpn_loc
rpn_cls_loss += rpn_cls
roi_loc_loss += roi_loc
roi_cls_loss += roi_cls
pbar.set_postfix(**{'total' : total_loss.item() / (iteration + 1),
'rpn_loc' : rpn_loc_loss.item() / (iteration + 1),
'rpn_cls' : rpn_cls_loss.item() / (iteration + 1),
'roi_loc' : roi_loc_loss.item() / (iteration + 1),
'roi_cls' : roi_cls_loss.item() / (iteration + 1),
'lr' : get_lr(optimizer)})
pbar.update(1)
print('Start Validation')
with tqdm(total=epoch_size_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
for iteration, batch in enumerate(genval):
if iteration >= epoch_size_val:
break
imgs,boxes,labels = batch[0], batch[1], batch[2]
with torch.no_grad():
imgs = Variable(torch.from_numpy(imgs).type(torch.FloatTensor)).cuda()
boxes = Variable(torch.from_numpy(boxes).type(torch.FloatTensor)).cuda()
labels = Variable(torch.from_numpy(labels).type(torch.FloatTensor)).cuda()
train_util.optimizer.zero_grad()
losses = train_util.forward(imgs, boxes, labels, 1)
_,_,_,_, val_total = losses
val_toal_loss += val_total
pbar.set_postfix(**{'total_loss': val_toal_loss.item() / (iteration + 1)})
pbar.update(1)
print('Finish Validation')
print('Epoch:'+ str(epoch+1) + '/' + str(Epoch))
print('Total Loss: %.4f || Val Loss: %.4f ' % (total_loss/(epoch_size+1),val_toal_loss/(epoch_size_val+1)))
print('Saving state, iter:', str(epoch+1))
torch.save(model.state_dict(), 'logs/Epoch%d-Total_Loss%.4f-Val_Loss%.4f.pth'%((epoch+1),total_loss/(epoch_size+1),val_toal_loss/(epoch_size_val+1)))
if __name__ == "__main__":
# 参数初始化
annotation_path = '2007_train.txt'
NUM_CLASSES = 20
IMAGE_SHAPE = [600,600,3]
BACKBONE = "resnet50"
model = FasterRCNN(NUM_CLASSES,backbone=BACKBONE).cuda()
#-------------------------------#
# Dataloder的使用
#-------------------------------#
Use_Data_Loader = True
model_path = r'model_data/voc_weights_resnet.pth'
print('Loading weights into state dict...')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_dict = model.state_dict()
pretrained_dict = torch.load(model_path, map_location=device)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
print('Finished!')
cudnn.benchmark = True
# 0.1用于验证,0.9用于训练
val_split = 0.1
with open(annotation_path) as f:
lines = f.readlines()
np.random.seed(10101)
np.random.shuffle(lines)
np.random.seed(None)
num_val = int(len(lines)*val_split)
num_train = len(lines) - num_val
if True:
lr = 1e-4
Init_Epoch = 0
Freeze_Epoch = 50
optimizer = optim.Adam(model.parameters(),lr,weight_decay=5e-4)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer,step_size=1,gamma=0.95)
if Use_Data_Loader:
train_dataset = FRCNNDataset(lines[:num_train],(IMAGE_SHAPE[0],IMAGE_SHAPE[1]))
val_dataset = FRCNNDataset(lines[num_train:],(IMAGE_SHAPE[0],IMAGE_SHAPE[1]))
gen = DataLoader(train_dataset, batch_size=1, num_workers=4, pin_memory=True,
drop_last=True, collate_fn=frcnn_dataset_collate)
gen_val = DataLoader(val_dataset, batch_size=1, num_workers=4, pin_memory=True,
drop_last=True, collate_fn=frcnn_dataset_collate)
else:
gen = Generator(lines[:num_train],(IMAGE_SHAPE[0],IMAGE_SHAPE[1])).generate()
gen_val = Generator(lines[num_train:],(IMAGE_SHAPE[0],IMAGE_SHAPE[1])).generate()
epoch_size = num_train
epoch_size_val = num_val
# ------------------------------------#
# 冻结一定部分训练
# ------------------------------------#
for param in model.extractor.parameters():
param.requires_grad = False
# ------------------------------------#
# 由于batch==1所以冻结bn层
# ------------------------------------#
model.freeze_bn()
for epoch in range(Init_Epoch,Freeze_Epoch):
fit_ont_epoch(model,epoch,epoch_size,epoch_size_val,gen,gen_val,Freeze_Epoch)
lr_scheduler.step()
if True:
lr = 1e-5
Freeze_Epoch = 50
Unfreeze_Epoch = 100
optimizer = optim.Adam(model.parameters(),lr,weight_decay=5e-4)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer,step_size=1,gamma=0.95)
if Use_Data_Loader:
train_dataset = FRCNNDataset(lines[:num_train],(IMAGE_SHAPE[0],IMAGE_SHAPE[1]))
val_dataset = FRCNNDataset(lines[num_train:],(IMAGE_SHAPE[0],IMAGE_SHAPE[1]))
gen = DataLoader(train_dataset, batch_size=1, num_workers=4, pin_memory=True,
drop_last=True, collate_fn=frcnn_dataset_collate)
gen_val = DataLoader(val_dataset, batch_size=1, num_workers=4, pin_memory=True,
drop_last=True, collate_fn=frcnn_dataset_collate)
else:
gen = Generator(lines[:num_train],(IMAGE_SHAPE[0],IMAGE_SHAPE[1])).generate()
gen_val = Generator(lines[num_train:],(IMAGE_SHAPE[0],IMAGE_SHAPE[1])).generate()
epoch_size = num_train
epoch_size_val = num_val
#------------------------------------#
# 解冻后训练
#------------------------------------#
for param in model.extractor.parameters():
param.requires_grad = True
# ------------------------------------#
# 由于batch==1所以冻结bn层
# ------------------------------------#
model.freeze_bn()
for epoch in range(Freeze_Epoch,Unfreeze_Epoch):
fit_ont_epoch(model,epoch,epoch_size,epoch_size_val,gen,gen_val,Unfreeze_Epoch)
lr_scheduler.step()