forked from GuyTevet/motion-diffusion-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mdm_talker.py
199 lines (162 loc) · 8.89 KB
/
mdm_talker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# This code is based on https://github.com/openai/guided-diffusion
import glob
import os
import sys
import pdb
import os.path as osp
import os
import numpy as np
import torch
sys.path.append(os.getcwd())
import shutil
from data_loaders.humanml.data.dataset import HumanML3D
from utils.fixseed import fixseed
from utils.parser_util import generate_args
from utils.model_util import create_model_and_diffusion, load_model_wo_clip
from utils import dist_util
from model.cfg_sampler import ClassifierFreeSampleModel
from data_loaders.get_data import get_dataset_loader
from data_loaders.humanml.scripts.motion_process import recover_from_ric
import data_loaders.humanml.utils.paramUtil as paramUtil
from data_loaders.humanml.utils.plot_script import plot_3d_motion
from data_loaders.tensors import collate
from sample.generate import construct_template_variables, save_multiple_samples, load_dataset
from datetime import datetime
class MDMTalker:
def __init__(self):
self.args = args = generate_args()
fixseed(args.seed)
out_path = args.output_dir
# args.model_path = "./mdm/humanml_trans_enc_512/model000200000.pt"
name = os.path.basename(os.path.dirname(args.model_path))
niter = os.path.basename(args.model_path).replace('model', '').replace('.pt', '')
max_frames = 196 if args.dataset in ['kit', 'humanml'] else 60
fps = 12.5 if args.dataset == 'kit' else 20
self.n_frames = n_frames = min(max_frames, int(args.motion_length*fps))
is_using_data = False
args.text_prompt = "Running around and jump up and down"
dist_util.setup_dist(args.device)
if out_path == '':
out_path = os.path.join(os.path.dirname(args.model_path),
'samples_{}_{}_seed{}'.format(name, niter, args.seed))
if args.text_prompt != '':
out_path += '_' + args.text_prompt.replace(' ', '_').replace('.', '')
elif args.input_text != '':
out_path += '_' + os.path.basename(args.input_text).replace('.txt', '').replace(' ', '_').replace('.', '')
# this block must be called BEFORE the dataset is loaded
if args.text_prompt != '':
texts = [args.text_prompt]
args.num_samples = 1
elif args.input_text != '':
assert os.path.exists(args.input_text)
with open(args.input_text, 'r') as fr:
texts = fr.readlines()
texts = [s.replace('\n', '') for s in texts]
args.num_samples = len(texts)
elif args.action_name:
action_text = [args.action_name]
args.num_samples = 1
elif args.action_file != '':
assert os.path.exists(args.action_file)
with open(args.action_file, 'r') as fr:
action_text = fr.readlines()
action_text = [s.replace('\n', '') for s in action_text]
args.num_samples = len(action_text)
assert args.num_samples <= args.batch_size, \
f'Please either increase batch_size({args.batch_size}) or reduce num_samples({args.num_samples})'
# So why do we need this check? In order to protect GPU from a memory overload in the following line.
# If your GPU can handle batch size larger then default, you can specify it through --batch_size flag.
# If it doesn't, and you still want to sample more prompts, run this script with different seeds
# (specify through the --seed flag)
args.batch_size = args.num_samples # Sampling a single batch from the testset, with exactly args.num_samples
print('Loading dataset...')
self.data = data = load_dataset(args, max_frames, n_frames)
total_num_samples = args.num_samples * args.num_repetitions
print("Creating model and diffusion...")
self.model, self.diffusion = create_model_and_diffusion(args, data)
print(f"Loading checkpoints from [{args.model_path}]...")
state_dict = torch.load(args.model_path, map_location='cpu')
load_model_wo_clip(self.model, state_dict)
if args.guidance_param != 1:
self.model = ClassifierFreeSampleModel(self.model) # wrapping model with the classifier-free sampler
self.model.to(dist_util.dev())
self.model.eval() # disable random masking
if is_using_data:
iterator = iter(data)
_, self.model_kwargs = next(iterator)
else:
collate_args = [{'inp': torch.zeros(n_frames), 'tokens': None, 'lengths': n_frames}] * args.num_samples
is_t2m = any([args.input_text, args.text_prompt])
if is_t2m:
# t2m
collate_args = [dict(arg, text=txt) for arg, txt in zip(collate_args, texts)]
else:
# a2m
action = data.dataset.action_name_to_action(action_text)
collate_args = [dict(arg, action=one_action, action_text=one_action_text) for
arg, one_action, one_action_text in zip(collate_args, action, action_text)]
_, self.model_kwargs = collate(collate_args)
def generate_motion(self, prompts, out_path = "mdm_out", num_repetitions = 1):
curr_date_time = datetime.now().strftime('%Y-%m-%d-%H:%M:%S')
args, model_kwargs, model, diffusion, data= self.args, self.model_kwargs, self.model, self.diffusion, self.data
model_kwargs['y']['text'] = prompts
fps = 12.5 if args.dataset == 'kit' else 20
all_motions = []
all_lengths = []
all_text = []
total_num_samples = self.n_frames * num_repetitions
batch_size = num_samples= len(prompts)
for rep_i in range(num_repetitions):
print(f'### Sampling [repetitions #{rep_i}]')
# add CFG scale to batch
if args.guidance_param != 1:
model_kwargs['y']['scale'] = torch.ones(batch_size, device=dist_util.dev()) * args.guidance_param
sample_fn = diffusion.p_sample_loop
sample = sample_fn(
model,
(batch_size, model.njoints, model.nfeats, self.n_frames),
clip_denoised=False,
model_kwargs=model_kwargs,
skip_timesteps=0, # 0 is the default value - i.e. don't skip any step
init_image=None,
progress=True,
dump_steps=None,
noise=None,
const_noise=False,
)
# Recover XYZ *positions* from HumanML3D vector representation
if model.data_rep == 'hml_vec':
n_joints = 22 if sample.shape[1] == 263 else 21
sample = data.dataset.t2m_dataset.inv_transform(sample.cpu().permute(0, 2, 3, 1)).float()
sample = recover_from_ric(sample, n_joints)
sample = sample.view(-1, *sample.shape[2:]).permute(0, 2, 3, 1)
rot2xyz_pose_rep = 'xyz' if model.data_rep in ['xyz', 'hml_vec'] else model.data_rep
rot2xyz_mask = None if rot2xyz_pose_rep == 'xyz' else model_kwargs['y']['mask'].reshape(args.batch_size, self.n_frames).bool()
sample = model.rot2xyz(x=sample, mask=rot2xyz_mask, pose_rep=rot2xyz_pose_rep, glob=True, translation=True,
jointstype='smpl', vertstrans=True, betas=None, beta=0, glob_rot=None,
get_rotations_back=False)
if args.unconstrained:
all_text += ['unconstrained'] * args.num_samples
else:
text_key = 'text' if 'text' in model_kwargs['y'] else 'action_text'
all_text += model_kwargs['y'][text_key]
all_motions.append(sample.cpu().numpy())
all_lengths.append(model_kwargs['y']['lengths'].cpu().numpy())
print(f"created {len(all_motions) * args.batch_size} samples")
all_motions = np.concatenate(all_motions, axis=0)
all_motions = all_motions[:total_num_samples] # [bs, njoints, 6, seqlen]
all_text = all_text[:total_num_samples]
all_lengths = all_lengths * batch_size
all_lengths = np.concatenate(all_lengths, axis=0)[:total_num_samples]
##### Convert to full SMPL
hand_len = 0.08824
mdm_jts = all_motions.transpose(0, 3, 1, 2).reshape(batch_size, -1, 22, 3)
direction = (mdm_jts[..., -2, :] - mdm_jts[..., -4, :])
left = mdm_jts[..., -2, :] + direction/np.linalg.norm(direction) * hand_len
direction = (mdm_jts[..., -1, :] - mdm_jts[..., -3, :])
right = mdm_jts[..., -1, :] + direction/np.linalg.norm(direction) * hand_len
mdm_jts_smpl_24 = np.concatenate([mdm_jts, left[..., None, :], right[..., None, :]], axis = -2)
return mdm_jts_smpl_24.squeeze()
if __name__ == "__main__":
mdm_talker = MDMTalker()
mdm_talker.generate_motion(["Running round"])