-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw2.py
84 lines (71 loc) · 3.09 KB
/
hw2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import matplotlib
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def relu(x):
if isinstance(x, list):
new_output = []
for i in x:
new_output.append(abs(i))
return new_output
else:
return abs(x)
class network:
def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
self.i_n = input_nodes
self.h_n = hidden_nodes
self.o_n = output_nodes
self.l_r = learning_rate
self.w_i_h = np.random.normal(0.0, pow(self.h_n, -0.5), (self.h_n, self.i_n))
self.w_h_o = np.random.normal(0.0, pow(self.o_n, -0.5), (self.o_n, self.h_n))
self.act_func = lambda x: sigmoid(x)
pass
def train(self, input_list, target_list):
input_array, target_array = np.array(input_list, ndmin=2).T, np.array(target_list, ndmin=2).T
hidden_input = np.dot(self.w_i_h, input_array)
hidden_output = self.act_func(hidden_input)
final_input = np.dot(self.w_h_o, hidden_output)
final_output = self.act_func(final_input)
output_err = target_array - final_output
hidden_err = np.dot(self.w_h_o.T, output_err * final_output * (1.0 - final_output))
self.w_h_o += self.l_r * np.dot((output_err * final_output * (1.0 - final_output)), np.transpose(hidden_output))
self.w_i_h += self.l_r * np.dot((hidden_err * hidden_output * (1.0 - hidden_output)), np.transpose(input_array))
pass
def query(self, input_list):
input_array = np.array(input_list, ndmin=2).T
hidden_input = np.dot(self.w_i_h, input_array)
hidden_output = self.act_func(hidden_input)
final_input = np.dot(self.w_h_o, hidden_output)
final_output = self.act_func(final_input)
return final_output
if __name__ == '__main__':
input_nodes = 28*28
hidden_nodes = 200
output_nodes = 10
learning_rate = 0.1
epochs = 5
score_borad = []
network_test = network(input_nodes, hidden_nodes, output_nodes, learning_rate)
path = '/Users/wangzhaohan/Desktop/ML-Program/mnist.npz'
file = np.load(path)
train_images, train_labels = file['x_train'], file['y_train']
test_images, test_labels = file['x_test'], file['y_test']
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255
for i in range(epochs):
for j in range(len(train_labels)):
use_test_labels = np.zeros(output_nodes) + 0.01
use_test_labels[int(train_labels[j])] = 0.99
network_test.train(train_images[j], use_test_labels)
print('Epoch: ', i+1, '/', epochs)
for i in range(len(test_labels)):
correct_lable = test_labels[i]
predict_lable = np.argmax(network_test.query(test_images[i]))
if predict_lable == correct_lable:
score_borad.append(1)
else:
score_borad.append(0)
score_borad = np.asarray(score_borad)
print("Accuracy: ", score_borad.sum()/score_borad.size)