forked from kdabi/CS698-cartoon-painter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tvloss.py
executable file
·328 lines (267 loc) · 13.6 KB
/
tvloss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
from __future__ import division, print_function, unicode_literals
import numpy as np
import torch
import torch.utils.data
import torchvision.transforms as transforms
from torch.autograd import Variable
# import matplotlib.pyplot as plt
import torch.nn as nn
import os
from torch.optim import lr_scheduler
import functools
from torch.nn import init
from image_pool import ImagePool
import util.util as util
from collections import OrderedDict
import TVLoss
if torch.cuda.is_available():
use_gpu = True
else:
use_gpu = False
# Assuming init_type = xavier
def init_weights(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.xavier_normal(m.weight.data, gain=1)
elif classname.find('Linear') != -1:
init.xavier_normal(m.weight.data, gain=1)
elif classname.find('BatchNorm2d') != -1:
init.uniform(m.weight.data, 1.0, 0.02)
init.constant(m.bias.data, 0.0)
def print_net(net):
params =0
for param in net.parameters():
params += param.numel()
print(net)
print('Total number of parameters in this network is %d' % params)
class TotalVarianceLoss(nn.Module):
def __init__(self, opt):
super(TotalVarianceLoss, self).__init__()
self.opt = opt
self.isTrain = opt.isTrain
self.Tensor = torch.cuda.FloatTensor if use_gpu else torch.Tensor
self.input_A = self.Tensor(opt.batchSize, opt.input_nc, opt.fineSize, opt.fineSize)
self.input_B = self.Tensor(opt.batchSize, opt.output_nc, opt.fineSize, opt.fineSize)
# Assuming norm_type = batch
norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
# model of Generator Net is unet_256
self.GeneratorNet = Generator(opt.input_nc, opt.output_nc, 8, opt.ngf, norm_layer=norm_layer,use_dropout = not opt.no_dropout)
if use_gpu:
self.GeneratorNet.cuda()
self.GeneratorNet.apply(init_weights)
if self.isTrain:
use_sigmoid = opt.no_lsgan
# model of Discriminator Net is basic
self.DiscriminatorNet = Discriminator(opt.input_nc+ opt.output_nc, opt.ndf, n_layers = 3, norm_layer = norm_layer, use_sigmoid = use_sigmoid)
if use_gpu:
self.DiscriminatorNet.cuda()
self.DiscriminatorNet.apply(init_weights)
if not self.isTrain or opt.continue_train:
self.load_network(self.GeneratorNet, 'Generator', opt.which_epoch)
if self.isTrain:
self.load_network(self.DiscriminatorNet, 'Discriminator', opt.which_epoch)
if self.isTrain:
self.fake_AB_pool = ImagePool(opt.pool_size)
self.learning_rate = opt.lr
# defining loss functions
self.criterionGAN = GANLoss(use_lsgan = not opt.no_lsgan, tensor=self.Tensor)
self.criterionL1 = torch.nn.L1Loss()
self.criterionTV = TVLoss.TVL()
self.MySchedulers = [] # initialising schedulers
self.MyOptimizers = [] # initialising optimizers
self.generator_optimizer = torch.optim.Adam(self.GeneratorNet.parameters(), lr=self.learning_rate, betas = (opt.beta1, 0.999))
self.discriminator_optimizer = torch.optim.Adam(self.DiscriminatorNet.parameters(), lr=self.learning_rate, betas = (opt.beta1, 0.999))
self.MyOptimizers.append(self.generator_optimizer)
self.MyOptimizers.append(self.discriminator_optimizer)
def lambda_rule(epoch):
lr_l = 1.0 - max(0, epoch - opt.niter)/float(opt.niter_decay+1)
return lr_l
for optimizer in self.MyOptimizers:
self.MySchedulers.append(lr_scheduler.LambdaLR(optimizer, lr_lambda = lambda_rule))
# assuming opt.lr_policy == 'lambda'
print('<============ NETWORKS INITIATED ============>')
print_net(self.GeneratorNet)
if self.isTrain:
print_net(self.DiscriminatorNet)
print('<=============================================>')
def save_network(self, network, network_label, epoch_label):
save_path = "./saved_models/%s_net_%s.pth" % (epoch_label, network_label)
torch.save(network.cpu().state_dict(), save_path)
if use_gpu:
network.cuda()
def load_network(self, network, network_label, epoch_label):
save_path = "./saved_models/%s_net_%s.pth" % (epoch_label, network_label)
# torch.save(network.cpu().state_dict(), save_path)
network.load_state_dict(torch.load(save_path))
def update_learning_rate(self):
for scheduler in self.MySchedulers:
scheduler.step()
lr = self.MyOptimizers[0].param_groups[0]['lr']
print('learning rate = %.7f' % lr)
def set_input(self, input):
self.input = input
if self.opt.which_direction == 'AtoB':
input_A = input['A']
input_B = input['B']
self.image_paths = input['A_paths']
else:
input_A = input['B']
input_B = input['A']
self.image_paths = input['B_paths']
self.input_A.resize_(input_A.size()).copy_(input_A)
self.input_B.resize_(input_B.size()).copy_(input_B)
def forward(self):
self.real_A = Variable(self.input_A)
self.generated_B = self.GeneratorNet.forward(self.real_A)
self.real_B = Variable(self.input_B)
def get_image_paths(self):
return self.image_paths
def backward_Discriminator(self):
# fake_AB = self.fake_AB_pool.query(torch.cat((self.real_A, self.generated_B), 1))
fake_AB = self.fake_AB_pool.query(torch.cat((self.real_A, self.generated_B), 1))
self.prediction_fake = self.DiscriminatorNet.forward(fake_AB.detach())
self.loss_D_fake = self.criterionGAN(self.prediction_fake, False)
real_AB = torch.cat((self.real_A, self.real_B), 1)
self.prediction_real = self.DiscriminatorNet.forward(real_AB)
self.loss_D_real = self.criterionGAN(self.prediction_real, False)
self.loss_Discriminator = (self.loss_D_fake+ self.loss_D_real)*0.5
self.loss_Discriminator.backward()
def backward_Generator(self):
fake_AB = torch.cat((self.real_A, self.generated_B), 1)
prediction_fake = self.DiscriminatorNet.forward(fake_AB)
self.loss_G_GAN = self.criterionGAN(prediction_fake, True)
self.loss_G_L1 = self.criterionL1(self.generated_B, self.real_B)*self.opt.lambda_A
self.loss_G_TV = self.criterionTV(self.generated_B)*self.opt.lambda_C
self.loss_Generator = self.loss_G_GAN + self.loss_G_L1 + self.loss_G_TV
self.loss_Generator.backward()
def optimize_parameters(self):
self.forward()
self.discriminator_optimizer.zero_grad()
self.backward_Discriminator()
self.discriminator_optimizer.step()
self.generator_optimizer.zero_grad()
self.backward_Generator()
self.generator_optimizer.step()
def get_current_errors(self):
return OrderedDict([('G_GAN', self.loss_G_GAN.data[0]),
('G_L1', self.loss_G_L1.data[0]),
('G_TV', self.loss_G_TV.data[0]),
('D_real', self.loss_D_real.data[0]),
('D_fake', self.loss_D_fake.data[0])
])
def get_current_visuals(self):
real_A = util.tensor2im(self.real_A.data)
fake_B = util.tensor2im(self.generated_B.data)
real_B = util.tensor2im(self.real_B.data)
return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('real_B', real_B)])
def save(self, label):
self.save_network(self.GeneratorNet, 'Generator', label)
self.save_network(self.DiscriminatorNet, 'Discriminator', label)
class Generator(nn.Module):
def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False):
super(Generator, self).__init__()
# constructing the unet generator structure
generator_block = UnetBlock(ngf*8, ngf*8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True)
for i in range(num_downs -5):
generator_block = UnetBlock(ngf*8, ngf*8, input_nc=None, submodule=generator_block, norm_layer=norm_layer, use_dropout=use_dropout)
generator_block = UnetBlock(ngf*4, ngf*8, input_nc=None,submodule=generator_block, norm_layer=norm_layer)
generator_block = UnetBlock(ngf*2, ngf*4, input_nc=None,submodule=generator_block, norm_layer=norm_layer)
generator_block = UnetBlock(ngf, ngf*2, input_nc=None,submodule=generator_block, norm_layer=norm_layer)
generator_block = UnetBlock(output_nc, ngf, input_nc=input_nc,submodule=generator_block, outermost=True, norm_layer=norm_layer)
self.model = generator_block
def forward(self, input):
return self.model(input)
class UnetBlock(nn.Module):
def __init__(self, outer_nc, inner_nc, input_nc = None, submodule = None, outermost=False,innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
super(UnetBlock, self).__init__()
self.outermost = outermost
if input_nc is None:
input_nc = outer_nc
self.model = nn.Sequential()
# self.model.add_module("downconv" , nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1))
# self.model.add_module("downrelu", nn.LeakyReLU(0,2, True))
# self.model.add_module("downnorm" ,norm_layer(inner_nc))
# self.model.add_module("uprelu", nn.ReLU(True))
# self.model.add_module("upnorm", norm_layer(outer_nc))
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if outermost:
self.model.add_module("downconv_" + str(outer_nc) , nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1))
upconv = nn.ConvTranspose2d(inner_nc*2, outer_nc, kernel_size=4, stride=2, padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc*2, outer_nc, kernel_size=4, stride=2, padding=1)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if use_dropout:
model = down+[submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost :
return self.model(x)
else :
return torch.cat([x, self.model(x)], 1)
class Discriminator(nn.Module):
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False):
super(Discriminator, self).__init__()
print("[here: ]Discriminator initialized")
use_bias = norm_layer == nn.InstanceNorm2d
self.model = nn.Sequential()
self.model.add_module("conv_0", nn.Conv2d(input_nc, ndf, kernel_size = 4, stride = 2, padding = 1))
self.model.add_module("relu_0", nn.LeakyReLU(0.2, True))
factor = 1
for n in range(1, n_layers):
last = factor
factor = 2**min(n,3)
self.model.add_module("conv_"+str(n), nn.Conv2d(ndf*last, ndf*factor, kernel_size = 4, stride =2, padding = 1, bias = use_bias))
self.model.add_module("norm_" + str(n), norm_layer(ndf*factor))
self.model.add_module("relu_"+str(n), nn.LeakyReLU(0.2, True))
last = factor
factor = 2**min(3,n_layers)
self.model.add_module("conv_"+str(n_layers), nn.Conv2d(ndf*last, ndf*factor, kernel_size = 4, stride =1, padding = 1, bias = use_bias))
self.model.add_module("norm_" + str(n_layers), norm_layer(ndf*factor))
self.model.add_module("relu_"+str(n_layers), nn.LeakyReLU(0.2, True))
self.model.add_module("conv_"+str(n_layers+1), nn.Conv2d(ndf*factor, 1, kernel_size = 4, stride = 1, padding = 1))
if use_sigmoid:
self.model.add_module("sigmoid", nn.Sigmoid())
def forward(self, input):
return self.model(input)
class GANLoss(nn.Module):
def __init__(self, use_lsgan = True, target_real_label = 1.0, target_fake_label = 0.0, tensor = torch.FloatTensor):
super(GANLoss, self).__init__()
self.real_label = target_real_label
self.fake_label = target_fake_label
self.real_label_var = None
self.fake_label_var = None
self.Tensor = tensor
if use_lsgan :
self.loss = nn.MSELoss()
else :
self.loss = nn.BCELoss()
def __call__(self, input, target_is_real):
target_tensor = None
if target_is_real:
create_label = ((self.real_label_var is None) or (self.real_label_var.numel() != input.numel()))
if create_label:
real_tensor = self.Tensor(input.size()).fill_(self.real_label)
self.real_label_var = Variable(real_tensor, requires_grad = False)
target_tensor = self.real_label_var
else:
create_label = ((self.fake_label_var is None) or (self.fake_label_var.numel() != input.numel()))
if create_label:
fake_tensor = self.Tensor(input.size()).fill_(self.fake_label)
self.fake_label_var = Variable(fake_tensor, requires_grad = False)
target_tensor = self.fake_label_var
return self.loss(input, target_tensor)