|
| 1 | +from anndata import AnnData |
| 2 | +from typing import Optional |
| 3 | +from scipy.stats import mannwhitneyu |
| 4 | +from tqdm import tqdm |
| 5 | +import pandas as pd |
| 6 | +import numpy as np |
| 7 | +import squidpy as sq |
| 8 | +from concurrent.futures import ThreadPoolExecutor |
| 9 | + |
| 10 | + |
| 11 | +def enrichment(adata: AnnData, id_key: str, val_key: str, library_key: Optional[str] = None): |
| 12 | + print(f"Calculating the enrichment of each cluster ({id_key}) in group ({val_key})...") |
| 13 | + obs = adata.obs.copy() |
| 14 | + id_list = sorted(list(set(obs[id_key]))) |
| 15 | + val_list = sorted(list(set(obs[val_key]))) |
| 16 | + if library_key is None: |
| 17 | + library_key = 'library' |
| 18 | + if library_key in obs.columns: |
| 19 | + library_key = library_key + '_new' |
| 20 | + obs[library_key] = 1 |
| 21 | + library_list = sorted(list(set(obs[library_key]))) |
| 22 | + |
| 23 | + df = obs.groupby([library_key, id_key, val_key]).size().unstack().fillna(0) |
| 24 | + df_list = [] |
| 25 | + for i in library_list: |
| 26 | + df_tmp = df.loc[(i,)] |
| 27 | + # avoid false positive (for example, (2 / 4 = 0.5) > (100 / 400 = 0.25)) |
| 28 | + # min niche size |
| 29 | + MIN_NUM = 20 |
| 30 | + df_tmp.loc[:, df_tmp.sum() < MIN_NUM] = 0 |
| 31 | + |
| 32 | + df_list_tmp = df_tmp.div(df_tmp.sum(axis=0), axis=1) |
| 33 | + df_list.append(df_list_tmp) |
| 34 | + |
| 35 | + fc = [] |
| 36 | + pval = [] |
| 37 | + for idx in id_list: |
| 38 | + fc_tmp = [] |
| 39 | + pval_tmp = [] |
| 40 | + |
| 41 | + pbar = tqdm(val_list) |
| 42 | + for val in pbar: |
| 43 | + # prop |
| 44 | + observed = [df.loc[idx, val] for df in df_list] |
| 45 | + expected = [df.drop(val, axis=1).loc[idx, ].mean() for df in df_list] |
| 46 | + |
| 47 | + # filter NA, some niches don't exist in every library |
| 48 | + observed_new = [x for x in observed if not np.isnan(x)] |
| 49 | + expected_new = [x for x in expected if not np.isnan(x)] |
| 50 | + |
| 51 | + # calculate enrichment |
| 52 | + _, p_value = mannwhitneyu(observed_new, expected_new, alternative='greater') |
| 53 | + # add a small value (1e-6) to avoind inf / -inf |
| 54 | + observed_mean = np.mean(observed_new) |
| 55 | + expected_mean = np.mean(expected_new) |
| 56 | + if observed_mean == 0: |
| 57 | + observed_mean = observed_mean + 1e-6 |
| 58 | + if expected_mean == 0: |
| 59 | + expected_mean = expected_mean + 1e-6 |
| 60 | + |
| 61 | + fold_change = np.log2(observed_mean / expected_mean) |
| 62 | + pval_tmp.append(p_value) |
| 63 | + fc_tmp.append(fold_change) |
| 64 | + |
| 65 | + pbar.set_description(f"Cluster: {idx}") |
| 66 | + |
| 67 | + pval.append(pval_tmp) |
| 68 | + fc.append(fc_tmp) |
| 69 | + |
| 70 | + pval = pd.DataFrame(pval) |
| 71 | + fc = pd.DataFrame(fc) |
| 72 | + pval.columns = fc.columns = val_list |
| 73 | + pval.index = fc.index = id_list |
| 74 | + |
| 75 | + adata.uns[f"{val_key}_{id_key}_fc"] = fc |
| 76 | + adata.uns[f"{val_key}_{id_key}_pval"] = pval |
| 77 | + adata.uns[f"{val_key}_{id_key}_proportion"] = df_list |
| 78 | + |
| 79 | + |
| 80 | +def _remove_intra_cluster_links( |
| 81 | + adata: AnnData, |
| 82 | + cluster_key: str, |
| 83 | + connectivity_key: str = 'spatial_connectivities', |
| 84 | + distances_key: str = 'spatial_distances', |
| 85 | + copy: bool = False): |
| 86 | + conns = adata.obsp[connectivity_key].copy() if copy else adata.obsp[connectivity_key] |
| 87 | + dists = adata.obsp[distances_key].copy() if copy else adata.obsp[distances_key] |
| 88 | + |
| 89 | + for matrix in [conns, dists]: |
| 90 | + target_clusters = np.array(adata.obs[cluster_key][matrix.indices]) |
| 91 | + source_clusters = np.array( |
| 92 | + adata.obs[cluster_key][np.repeat(np.arange(matrix.indptr.shape[0] - 1), np.diff(matrix.indptr))] |
| 93 | + ) |
| 94 | + |
| 95 | + inter_cluster_mask = (source_clusters != target_clusters).astype(int) |
| 96 | + |
| 97 | + matrix.data *= inter_cluster_mask |
| 98 | + matrix.eliminate_zeros() |
| 99 | + |
| 100 | + if copy: |
| 101 | + return conns, dists |
| 102 | + |
| 103 | + |
| 104 | +def _observed_n_clusters_links(adj, labels): |
| 105 | + labels_unique = labels.cat.categories |
| 106 | + obs = np.zeros((len(labels_unique), len(labels_unique))) |
| 107 | + for i, l1 in enumerate(labels_unique): |
| 108 | + total_cluster_links = adj[labels == l1] |
| 109 | + |
| 110 | + for j, l2 in enumerate(labels_unique): |
| 111 | + other_cluster_links = total_cluster_links[:, labels == l2] |
| 112 | + |
| 113 | + obs[i, j] = np.sum(other_cluster_links) |
| 114 | + |
| 115 | + obs = pd.DataFrame(obs, columns=labels_unique, index=labels_unique) |
| 116 | + return obs |
| 117 | + |
| 118 | + |
| 119 | +def spatial_link(adata: AnnData, cluster_key: str, only_inter: bool = True, normalize: bool = False, |
| 120 | + connectivity_key: str = 'spatial_connectivities', distances_key: str = 'spatial_distances',): |
| 121 | + adata_select = adata.copy() |
| 122 | + |
| 123 | + # spatial graph |
| 124 | + sq.gr.spatial_neighbors(adata_select, delaunay=True) |
| 125 | + |
| 126 | + if only_inter: |
| 127 | + _remove_intra_cluster_links(adata_select, cluster_key=cluster_key, |
| 128 | + connectivity_key=connectivity_key, distances_key=distances_key) |
| 129 | + |
| 130 | + adj = adata_select.obsp[connectivity_key] |
| 131 | + label = adata_select.obs[cluster_key] |
| 132 | + observed = _observed_n_clusters_links(adj, label) |
| 133 | + |
| 134 | + if normalize: |
| 135 | + for i in list(set(label)): |
| 136 | + for j in list(set(label)): |
| 137 | + if observed.loc[i, j] == 0: |
| 138 | + continue |
| 139 | + observed.loc[i, j] = observed.loc[i, j] / adata_select[adata_select.obs[cluster_key] == i].shape[0] |
| 140 | + |
| 141 | + adata.uns[f"{cluster_key}_spatial_link"] = observed |
| 142 | + |
| 143 | + |
| 144 | +def _calculate_composition_ratio(df, library_key, niche_key, celltype_key, cutoff, selected): |
| 145 | + df_select = df[df[library_key] == selected] |
| 146 | + niche_ratios = df_select[niche_key].value_counts(normalize=True) |
| 147 | + niche_to_keep = niche_ratios[niche_ratios >= cutoff].index |
| 148 | + |
| 149 | + result = [] |
| 150 | + for niche in niche_to_keep: |
| 151 | + df_slice = df_select[df_select[niche_key] == niche] |
| 152 | + celltype_ratios = df_slice[celltype_key].value_counts(normalize=True) |
| 153 | + niche_ratio = niche_ratios[niche] |
| 154 | + row = { |
| 155 | + library_key: selected, |
| 156 | + niche_key: niche, |
| 157 | + 'Niche_ratio': niche_ratio, |
| 158 | + **{f'{c}_ratio': ratio for c, ratio in celltype_ratios.items()} |
| 159 | + } |
| 160 | + result.append(row) |
| 161 | + |
| 162 | + return pd.DataFrame(result) |
| 163 | + |
| 164 | + |
| 165 | +def _calculate_average_exp(df, library_key, niche_key, celltype_key, gene_list, cutoff, selected_celltype, selected): |
| 166 | + df_select = df[df[library_key] == selected] |
| 167 | + niche_ratios = df_select[niche_key].value_counts(normalize=True) |
| 168 | + niche_to_keep = niche_ratios[niche_ratios >= cutoff].index |
| 169 | + |
| 170 | + result = [] |
| 171 | + for niche in niche_to_keep: |
| 172 | + df_slice = df_select[(df_select[niche_key] == niche) & (df_select[celltype_key].isin(selected_celltype))] |
| 173 | + avg_values = {gene: df_slice[gene].mean() for gene in gene_list} |
| 174 | + niche_ratio = niche_ratios[niche] |
| 175 | + row = { |
| 176 | + library_key: selected, |
| 177 | + niche_key: niche, |
| 178 | + 'Niche_ratio': niche_ratio, |
| 179 | + **avg_values |
| 180 | + } |
| 181 | + result.append(row) |
| 182 | + |
| 183 | + return pd.DataFrame(result) |
| 184 | + |
| 185 | + |
| 186 | +def calculate_composition_multi(adata: AnnData, library_key: str, niche_key: str, celltype_key: str, cutoff: float = 0.05): |
| 187 | + obs = adata.obs.copy() |
| 188 | + obs[celltype_key] = obs[celltype_key].astype('str') |
| 189 | + |
| 190 | + with ThreadPoolExecutor() as executor: |
| 191 | + results = [ |
| 192 | + executor.submit( |
| 193 | + _calculate_composition_ratio, obs, library_key, niche_key, celltype_key, cutoff, sample |
| 194 | + ) for sample in obs[library_key].unique() |
| 195 | + ] |
| 196 | + |
| 197 | + dfs = [r.result() for r in results] |
| 198 | + |
| 199 | + df = pd.concat(dfs, ignore_index=True) |
| 200 | + |
| 201 | + adata.uns["composition_multi"] = df |
| 202 | + |
| 203 | + |
| 204 | +def calculate_average_exp_multi(adata: AnnData, layer_key: str, library_key: str, niche_key: str, celltype_key: str, |
| 205 | + gene_list: Optional[list] = None, selected_celltype: Optional[list] = None, cutoff: float = 0.05): |
| 206 | + adata_use = adata.copy() |
| 207 | + if layer_key not in adata_use.layers.keys(): |
| 208 | + adata_use.layers[layer_key] = adata_use.X |
| 209 | + exp = adata_use.to_df(layer=layer_key) |
| 210 | + if gene_list is None: |
| 211 | + gene_list = list(exp.columns) |
| 212 | + |
| 213 | + obs = adata_use.obs.copy() |
| 214 | + obs = pd.concat([obs, exp], axis=1) |
| 215 | + |
| 216 | + if selected_celltype is None: |
| 217 | + selected_celltype = list(set(obs[celltype_key])) |
| 218 | + |
| 219 | + with ThreadPoolExecutor() as executor: |
| 220 | + results = [ |
| 221 | + executor.submit( |
| 222 | + _calculate_average_exp, obs, library_key, niche_key, celltype_key, gene_list, cutoff, selected_celltype, sample |
| 223 | + ) for sample in obs[library_key].unique() |
| 224 | + ] |
| 225 | + |
| 226 | + dfs = [r.result() for r in results] |
| 227 | + |
| 228 | + df = pd.concat(dfs, ignore_index=True) |
| 229 | + |
| 230 | + adata.uns["expression_multi"] = df |
| 231 | + |
| 232 | + |
| 233 | +def average_exp(adata: AnnData, layer_key: str, id_key: str, val_key: str, select_idx: Optional[list] = None, |
| 234 | + select_val: Optional[list] = None): |
| 235 | + adata_use = adata.copy() |
| 236 | + if select_idx is not None: |
| 237 | + adata_use = adata_use[adata_use.obs[id_key].isin(select_idx)].copy() |
| 238 | + |
| 239 | + if select_val is not None: |
| 240 | + adata_use = adata_use[adata_use.obs[val_key].isin(select_val)].copy() |
| 241 | + |
| 242 | + if layer_key not in adata_use.layers.keys(): |
| 243 | + adata_use.layers[layer_key] = adata_use.X |
| 244 | + |
| 245 | + df = adata_use.to_df(layer=layer_key) |
| 246 | + average_df = df.groupby(adata_use.obs[id_key]).mean() |
| 247 | + |
| 248 | + return average_df |
| 249 | + |
| 250 | + |
| 251 | +def cal_composition(adata: AnnData, id_key: str, val_key: str, ): |
| 252 | + obs = adata.obs.copy() |
| 253 | + df = obs.groupby([val_key, id_key]).size().unstack().fillna(0) |
| 254 | + df = df.div(df.sum(axis=1), axis=0) |
| 255 | + return df |
| 256 | + |
| 257 | + |
| 258 | + |
| 259 | + |
| 260 | + |
0 commit comments