-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain_linear.py
96 lines (78 loc) · 2.77 KB
/
main_linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
import json
from pathlib import Path
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.plugins import DDPPlugin
from src.args.setup import parse_args_linear
from src.args.utils import IMG_SIZE_DATASET
try:
from src.methods.dali import ClassificationABC
except ImportError:
_dali_avaliable = False
else:
_dali_avaliable = True
from src.methods.linear import LinearModel
from src.utils.classification_dataloader import prepare_data
from src.utils.checkpointer import Checkpointer
from src.methods import METHODS
def main():
args = parse_args_linear()
# build paths
ckpt_dir = Path(args.pretrained_feature_extractor)
args_path = ckpt_dir / "args.json"
ckpt_path = [ckpt_dir / ckpt for ckpt in os.listdir(ckpt_dir) if ckpt.endswith(".ckpt")][0]
# load arguments
with open(args_path) as f:
method_args = json.load(f)
# build the model
model = METHODS[method_args["method"]].load_from_checkpoint(
ckpt_path, strict=False, **method_args
)
if args.dali:
assert _dali_avaliable, "Dali is not currently avaiable, please install it first."
MethodClass = type(f"Dali{LinearModel.__name__}", (LinearModel, ClassificationABC), {})
else:
MethodClass = LinearModel
model = MethodClass(model, **args.__dict__)
train_loader, val_loader = prepare_data(
dataset=args.dataset,
size=IMG_SIZE_DATASET[args.dataset],
data_dir=args.data_dir,
batch_size=args.batch_size,
num_workers=args.num_workers,
)
callbacks = []
# wandb logging
if args.wandb:
wandb_logger = WandbLogger(
name=args.name, project=args.project, entity=args.entity, offline=args.offline
)
wandb_logger.watch(model, log="gradients", log_freq=100)
wandb_logger.log_hyperparams(args)
# lr logging
lr_monitor = LearningRateMonitor(logging_interval="epoch")
callbacks.append(lr_monitor)
# save checkpoint on last epoch only
ckpt = Checkpointer(
args,
logdir=os.path.join(args.pretrained_feature_extractor, "linear"),
frequency=args.checkpoint_frequency,
)
callbacks.append(ckpt)
trainer = Trainer.from_argparse_args(
args,
logger=wandb_logger if args.wandb else None,
callbacks=callbacks,
plugins=DDPPlugin(find_unused_parameters=False),
checkpoint_callback=False,
terminate_on_nan=True,
accelerator="ddp",
)
if args.dali:
trainer.fit(model, val_dataloaders=val_loader)
else:
trainer.fit(model, train_loader, val_loader)
if __name__ == "__main__":
main()