-
Notifications
You must be signed in to change notification settings - Fork 1
/
model.py
52 lines (45 loc) · 1.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import torch.nn as nn
class Generator(nn.Module):
def __init__(self, nhidden):
super(Generator, self).__init__()
self.block = nn.Sequential(
nn.Linear(2, nhidden),
nn.BatchNorm1d(nhidden),
nn.ReLU(True),
nn.Linear(nhidden, nhidden),
nn.BatchNorm1d(nhidden),
nn.ReLU(True),
nn.Linear(nhidden, nhidden),
nn.BatchNorm1d(nhidden),
nn.ReLU(True),
nn.Linear(nhidden, nhidden),
nn.BatchNorm1d(nhidden),
nn.ReLU(True),
nn.Linear(nhidden, nhidden),
nn.BatchNorm1d(nhidden),
nn.ReLU(True),
nn.Linear(nhidden, 2)
)
def forward(self, ipt):
opt = self.block(ipt)
return opt
class Discriminator(nn.Module):
def __init__(self, nhidden):
super(Discriminator, self).__init__()
self.block = nn.Sequential(
nn.Linear(2, nhidden),
nn.ReLU(True),
nn.Linear(nhidden, nhidden),
nn.ReLU(True),
nn.Linear(nhidden, nhidden),
nn.ReLU(True),
nn.Linear(nhidden, nhidden),
nn.ReLU(True),
nn.Linear(nhidden, nhidden),
nn.ReLU(True),
nn.Linear(nhidden, 1)
)
def forward(self, ipt):
opt = self.block(ipt)
return opt.squeeze()