그래프를 탐색하는 방법에는 크게 **깊이 우선 탐색(DFS)**과 **너비 우선 탐색(BFS)**이 있습니다.
그래프란, 정점(node)과 그 정점을 연결하는 간선(edge)으로 이루어진 자료구조의 일종을 말하며,
그래프를 탐색한다는 것은 하나의 정점으로부터 시작하여 차례대로 모든 정점들을 한 번씩 방문하는 것을 말합니다.
출처 https://developer-mac.tistory.com/64
루트 노드(혹은 다른 임의의 노드)에서 시작해서 다음 분기(branch)로 넘어가기 전에 해당 분기를 완벽하게 탐색하는 방식을 말합니다.
예를 들어, 미로찾기를 할 때 최대한 한 방향으로 갈 수 있을 때까지 쭉 가다가 더 이상 갈 수 없게 되면 다시 가장 가까운 갈림길로 돌아와서 그 갈림길부터 다시 다른 방향으로 탐색을 진행하는 것이 깊이 우선 탐색 방식이라고 할 수 있습니다.
-
모든 노드를 방문하고자 하는 경우에 이 방법을 선택함
-
깊이 우선 탐색(DFS)이 너비 우선 탐색(BFS)보다 좀 더 간단함
-
검색 속도 자체는 너비 우선 탐색(BFS)에 비해서 느림
출처 https://developer-mac.tistory.com/64
루트 노드(혹은 다른 임의의 노드)에서 시작해서 인접한 노드를 먼저 탐색하는 방법으로, 시작 정점으로부터 가까운 정점을 먼저 방문하고 멀리 떨어져 있는 정점을 나중에 방문하는 순회 방법입니다.
주로 두 노드 사이의 최단 경로를 찾고 싶을 때 이 방법을 선택합니다.
ex) 지구 상에 존재하는 모든 친구 관계를 그래프로 표현한 후 Sam과 Eddie사이에 존재하는 경로를 찾는 경우
- 깊이 우선 탐색의 경우 - 모든 친구 관계를 다 살펴봐야 할지도 모름
- 너비 우선 탐색의 경우 - Sam과 가까운 관계부터 탐색
DFS(깊이우선탐색) | BFS(너비우선탐색) |
---|---|
현재 정점에서 갈 수 있는 점들까지 들어가면서 탐색 | 현재 정점에 연결된 가까운 점들부터 탐색 |
스택 또는 재귀함수로 구현 | 큐를 이용해서 구현 |
두 방식 모두 조건 내의 모든 노드를 검색한다는 점에서 시간 복잡도는 동일합니다.
DFS와 BFS 둘 다 다음 노드가 방문하였는지를 확인하는 시간과 각 노드를 방문하는 시간을 합하면 됩니다.
N은 노드, E는 간선일 때
- 인접 리스트 : O(N+E)
- 인접 행렬 : O(N^2)
일반적으로 E(간선)의 크기가 N²에 비해 상대적으로 적기 때문에 인접 리스트 방식이 효율적임