forked from donovan-h-parks/Background-Subtraction-Library
-
Notifications
You must be signed in to change notification settings - Fork 0
/
WrenGA.hpp
123 lines (94 loc) · 3.74 KB
/
WrenGA.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/****************************************************************************
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
/****************************************************************************
*
* WrenGA.hpp
*
* Purpose: Implementation of the running Gaussian average background
* subtraction algorithm described in:
* "Pfinder: real-time tracking of the human body"
* by C. Wren et al (1997)
*
* Author: Donovan Parks, September 2007
*
* Please note that this is not an implementation of Pfinder. It implements
* a simple background subtraction algorithm where each pixel is represented
* by a single Gaussian and update using a simple weighting function.
Example:
Algorithms::BackgroundSubtraction::WrenParams params;
params.SetFrameSize(width, height);
params.LowThreshold() = 3.5f*3.5f;
params.HighThreshold() = 2*params.LowThreshold(); // Note: high threshold is used by post-processing
params.Alpha() = 0.005f;
params.LearningFrames() = 30;
Algorithms::BackgroundSubtraction::WrenGA bgs;
bgs.Initalize(params);
******************************************************************************/
#ifndef WREN_GA_H
#define WREN_GA_H
#include "Bgs.hpp"
namespace Algorithms
{
namespace BackgroundSubtraction
{
// --- Parameters used by the Mean BGS algorithm ---
class WrenParams : public BgsParams
{
public:
float &LowThreshold() { return m_low_threshold; }
float &HighThreshold() { return m_high_threshold; }
float &Alpha() { return m_alpha; }
int &LearningFrames() { return m_learning_frames; }
private:
// The threshold indicates the number of variances (not standard deviations) away
// from the mean before a pixel is considered to be from the foreground.
float m_low_threshold;
float m_high_threshold;
float m_alpha;
int m_learning_frames;
};
// --- Mean BGS algorithm ---
class WrenGA : public Bgs
{
private:
struct GAUSSIAN
{
float mu[NUM_CHANNELS];
float var[NUM_CHANNELS];
};
public:
WrenGA();
~WrenGA();
void Initalize(const BgsParams& param);
void InitModel(const RgbImage& data);
void Subtract(int frame_num, const RgbImage& data,
BwImage& low_threshold_mask, BwImage& high_threshold_mask);
void Update(int frame_num, const RgbImage& data, const BwImage& update_mask);
RgbImage* Background() { return &m_background; }
private:
void SubtractPixel(int r, int c, const RgbPixel& pixel,
unsigned char& lowThreshold, unsigned char& highThreshold);
WrenParams m_params;
// Initial variance for the newly generated components.
float m_variance;
// dynamic array for the mixture of Gaussians
GAUSSIAN* m_gaussian;
RgbImage m_background;
};
};
};
#endif