-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraw_toydata.py
136 lines (115 loc) · 4.22 KB
/
draw_toydata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
from matplotlib.collections import LineCollection
def get_data(file1='jobbased_baseline.txt', file2='depthbased_baseline.txt'):
f1 = open(file1, 'r')
f2 = open(file2, 'r')
jobbased_x = np.zeros(8)
jobbased_y = np.zeros(8)
for i in range(8):
line = f1.readline()
line = line.split(' ')
cost_time = float(line[len(line)-1].split('\n')[0])
jobbased_x[i] = i
jobbased_y[i] = cost_time
if i==7:
jobbased_finish_y = np.array(cost_time)
jobbased_finish_x = np.array(7)
depthbased_x = np.zeros(5)
depthbased_y = np.zeros(5)
for i in range(5):
line = f2.readline()
line = line.split(' ')
cost_time = float(line[len(line)-1].split('\n')[0])
depthbased_x[i] = i
depthbased_y[i] = cost_time
if i==4:
depthbased_finish_y = np.array(cost_time)
depthbased_finish_x = np.array(4)
f1.close()
f2.close()
def draw_completion_time(file1='jobbased_baseline.txt', file2='depthbased_baseline.txt', y_high=15.5, figure_name='./comparison.png'):
"""
Draw graph: Completion Time of Each Collection
"""
global jobbased_finish_x
global jobbased_finish_y
global jobbased_x
global jobbased_y
global depthbased_finish_x
global depthbased_finish_y
global depthbased_y
global depthbased_x
# # baseline
# jobbased_x = np.array([0,1,2,3,4,5,6,7])
# jobbased_y = np.array([4.5, 10, 3.53, 4.25, 3.08, 1.575, 2.75, 3.667])
# jobbased_finish_x = np.array(7)
# jobbased_finish_y = np.array(3.667)
# # SGD
# depthbased_x = np.array([0,1,2,3,4])
# depthbased_y = np.array([5.0, 5.0, 6.0, 2.75, 3.667])
# depthbased_finish_x = np.array(4)
# depthbased_finish_y = np.array(3.667)
# def get_data():
f1 = open(file1, 'r')
f2 = open(file2, 'r')
jobbased_x = np.zeros(8)
jobbased_y = np.zeros(8)
for i in range(8):
line = f1.readline()
line = line.split(' ')
cost_time = float(line[len(line)-1].split('\n')[0])
jobbased_x[i] = i
jobbased_y[i] = cost_time
if i==7:
jobbased_finish_y = np.array(cost_time)
jobbased_finish_x = np.array(7)
depthbased_x = np.zeros(5)
depthbased_y = np.zeros(5)
for i in range(5):
line = f2.readline()
line = line.split(' ')
cost_time = float(line[len(line)-1].split('\n')[0])
depthbased_x[i] = i
depthbased_y[i] = cost_time
if i==4:
depthbased_finish_y = np.array(cost_time)
depthbased_finish_x = np.array(4)
f1.close()
f2.close()
plt.plot(jobbased_x, jobbased_y, lw=2, color='red', alpha=0.7, label='Baseline')
plt.plot(depthbased_x, depthbased_y, lw=2, color='blue', alpha=0.7, label='SGD')
plt.xlabel('Depth or Step')
plt.grid()
plt.xlim([0,7])
plt.ylim([0,y_high])
plt.ylabel('Time Cost/s')
plt.scatter(depthbased_finish_x, depthbased_finish_y, c='blue', marker='*', s=30)
plt.text(depthbased_finish_x-0.5, depthbased_finish_y+0.2, 'finish point', c='blue')
plt.scatter(jobbased_finish_x, jobbased_finish_y, c='red', marker='*', s=30)
plt.text(jobbased_finish_x-0.5, jobbased_finish_y+0.2, 'finish point', c='red')
plt.fill_between(jobbased_x, jobbased_y, facecolor='red', alpha=0.3)
plt.fill_between(depthbased_x, depthbased_y, facecolor='blue', alpha=0.3)
plt.legend()
plt.title('Completion Time of Each Collection')
plt.savefig(figure_name)
plt.show()
def draw_extime():
x = np.array([1.5,1.5,2.5,1,4,1,2,2,2,1.5,1,1,4,2,3,2,1,3,4,2,1,3,1,1.5,2.5,2,3.5])
mean = np.mean(x)
variance = np.var(x)
plt.grid()
map_vir = cm.get_cmap(name='viridis')
color = map_vir(x)
plt.hist(x, color='purple', alpha=0.6, label='Execution Time')
plt.legend()
plt.title('Occurrence of Different Execution Time')
plt.ylabel('Occurrence')
plt.xlabel('Execution Time/s')
plt.savefig('./extime.png')
plt.show()
if __name__=='__main__':
# draw_completion_time()
# draw_extime()
draw_completion_time(figure_name='./comparison9.png')