forked from hpcaitech/Open-Sora
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference-long.py
318 lines (286 loc) · 12.9 KB
/
inference-long.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import json
import os
import re
import colossalai
import torch
import torch.distributed as dist
from colossalai.cluster import DistCoordinator
from mmengine.runner import set_random_seed
from opensora.acceleration.parallel_states import set_sequence_parallel_group
from opensora.datasets import IMG_FPS, save_sample
from opensora.datasets.utils import read_from_path
from opensora.models.text_encoder.t5 import text_preprocessing
from opensora.registry import MODELS, SCHEDULERS, build_module
from opensora.utils.config_utils import parse_configs
from opensora.utils.misc import to_torch_dtype
def collect_references_batch(reference_paths, vae, image_size):
refs_x = []
for reference_path in reference_paths:
if reference_path is None:
refs_x.append([])
continue
ref_path = reference_path.split(";")
ref = []
for r_path in ref_path:
r = read_from_path(r_path, image_size, transform_name="resize_crop")
r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype))
r_x = r_x.squeeze(0)
ref.append(r_x)
refs_x.append(ref)
# refs_x: [batch, ref_num, C, T, H, W]
return refs_x
def process_mask_strategy(mask_strategy):
mask_batch = []
mask_strategy = mask_strategy.split(";")
for mask in mask_strategy:
mask_group = mask.split(",")
assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}"
if len(mask_group) == 1:
mask_group.extend(["0", "0", "0", "1", "0"])
elif len(mask_group) == 2:
mask_group.extend(["0", "0", "1", "0"])
elif len(mask_group) == 3:
mask_group.extend(["0", "1", "0"])
elif len(mask_group) == 4:
mask_group.extend(["1", "0"])
elif len(mask_group) == 5:
mask_group.append("0")
mask_batch.append(mask_group)
return mask_batch
def apply_mask_strategy(z, refs_x, mask_strategys, loop_i):
masks = []
for i, mask_strategy in enumerate(mask_strategys):
mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device)
if mask_strategy is None:
masks.append(mask)
continue
mask_strategy = process_mask_strategy(mask_strategy)
for mst in mask_strategy:
loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst
loop_id = int(loop_id)
if loop_id != loop_i:
continue
m_id = int(m_id)
m_ref_start = int(m_ref_start)
m_length = int(m_length)
m_target_start = int(m_target_start)
edit_ratio = float(edit_ratio)
ref = refs_x[i][m_id] # [C, T, H, W]
if m_ref_start < 0:
m_ref_start = ref.shape[1] + m_ref_start
if m_target_start < 0:
# z: [B, C, T, H, W]
m_target_start = z.shape[2] + m_target_start
z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length]
mask[m_target_start : m_target_start + m_length] = edit_ratio
masks.append(mask)
masks = torch.stack(masks)
return masks
def process_prompts(prompts, num_loop):
ret_prompts = []
for prompt in prompts:
if prompt.startswith("|0|"):
prompt_list = prompt.split("|")[1:]
text_list = []
for i in range(0, len(prompt_list), 2):
start_loop = int(prompt_list[i])
text = prompt_list[i + 1]
text = text_preprocessing(text)
end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop
text_list.extend([text] * (end_loop - start_loop))
assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}"
ret_prompts.append(text_list)
else:
prompt = text_preprocessing(prompt)
ret_prompts.append([prompt] * num_loop)
return ret_prompts
def extract_json_from_prompts(prompts):
additional_infos = []
ret_prompts = []
for prompt in prompts:
parts = re.split(r"(?=[{\[])", prompt)
assert len(parts) <= 2, f"Invalid prompt: {prompt}"
ret_prompts.append(parts[0])
if len(parts) == 1:
additional_infos.append({})
else:
additional_infos.append(json.loads(parts[1]))
return ret_prompts, additional_infos
def main():
# ======================================================
# 1. cfg and init distributed env
# ======================================================
cfg = parse_configs(training=False)
print(cfg)
# init distributed
if os.environ.get("WORLD_SIZE", None):
use_dist = True
colossalai.launch_from_torch({})
coordinator = DistCoordinator()
if coordinator.world_size > 1:
set_sequence_parallel_group(dist.group.WORLD)
enable_sequence_parallelism = True
else:
enable_sequence_parallelism = False
else:
use_dist = False
enable_sequence_parallelism = False
# ======================================================
# 2. runtime variables
# ======================================================
torch.set_grad_enabled(False)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = to_torch_dtype(cfg.dtype)
set_random_seed(seed=cfg.seed)
prompts = cfg.prompt
# ======================================================
# 3. build model & load weights
# ======================================================
# 3.1. build model
input_size = (cfg.num_frames, *cfg.image_size)
vae = build_module(cfg.vae, MODELS)
latent_size = vae.get_latent_size(input_size)
text_encoder = build_module(cfg.text_encoder, MODELS, device=device) # T5 must be fp32
model = build_module(
cfg.model,
MODELS,
input_size=latent_size,
in_channels=vae.out_channels,
caption_channels=text_encoder.output_dim,
model_max_length=text_encoder.model_max_length,
dtype=dtype,
enable_sequence_parallelism=enable_sequence_parallelism,
)
text_encoder.y_embedder = model.y_embedder # hack for classifier-free guidance
# 3.2. move to device & eval
vae = vae.to(device, dtype).eval()
model = model.to(device, dtype).eval()
# 3.3. build scheduler
scheduler = build_module(cfg.scheduler, SCHEDULERS)
# 3.4. support for multi-resolution
model_args = dict()
if cfg.multi_resolution == "PixArtMS":
image_size = cfg.image_size
hw = torch.tensor([image_size], device=device, dtype=dtype).repeat(cfg.batch_size, 1)
ar = torch.tensor([[image_size[0] / image_size[1]]], device=device, dtype=dtype).repeat(cfg.batch_size, 1)
model_args["data_info"] = dict(ar=ar, hw=hw)
elif cfg.multi_resolution == "STDiT2":
image_size = cfg.image_size
height = torch.tensor([image_size[0]], device=device, dtype=dtype).repeat(cfg.batch_size)
width = torch.tensor([image_size[1]], device=device, dtype=dtype).repeat(cfg.batch_size)
num_frames = torch.tensor([cfg.num_frames], device=device, dtype=dtype).repeat(cfg.batch_size)
ar = torch.tensor([image_size[0] / image_size[1]], device=device, dtype=dtype).repeat(cfg.batch_size)
if cfg.num_frames == 1:
cfg.fps = IMG_FPS
fps = torch.tensor([cfg.fps], device=device, dtype=dtype).repeat(cfg.batch_size)
model_args["height"] = height
model_args["width"] = width
model_args["num_frames"] = num_frames
model_args["ar"] = ar
model_args["fps"] = fps
# 3.5 reference
if cfg.reference_path is not None:
assert len(cfg.reference_path) == len(
prompts
), f"Reference path mismatch: {len(cfg.reference_path)} != {len(prompts)}"
assert len(cfg.reference_path) == len(
cfg.mask_strategy
), f"Mask strategy mismatch: {len(cfg.mask_strategy)} != {len(prompts)}"
else:
cfg.reference_path = [None] * len(prompts)
cfg.mask_strategy = [None] * len(prompts)
# ======================================================
# 4. inference
# ======================================================
sample_idx = 0
if cfg.sample_name is not None:
sample_name = cfg.sample_name
elif cfg.prompt_as_path:
sample_name = ""
else:
sample_name = "sample"
save_dir = cfg.save_dir
os.makedirs(save_dir, exist_ok=True)
# 4.1. batch generation
for i in range(0, len(prompts), cfg.batch_size):
batch_prompts_raw = prompts[i : i + cfg.batch_size]
batch_prompts_raw, additional_infos = extract_json_from_prompts(batch_prompts_raw)
batch_prompts_loops = process_prompts(batch_prompts_raw, cfg.loop)
# handle the last batch
if len(batch_prompts_raw) < cfg.batch_size and cfg.multi_resolution == "STDiT2":
model_args["height"] = model_args["height"][: len(batch_prompts_raw)]
model_args["width"] = model_args["width"][: len(batch_prompts_raw)]
model_args["num_frames"] = model_args["num_frames"][: len(batch_prompts_raw)]
model_args["ar"] = model_args["ar"][: len(batch_prompts_raw)]
model_args["fps"] = model_args["fps"][: len(batch_prompts_raw)]
# 4.2. load reference videos & images
for j, info in enumerate(additional_infos):
if "reference_path" in info:
cfg.reference_path[i + j] = info["reference_path"]
if "mask_strategy" in info:
cfg.mask_strategy[i + j] = info["mask_strategy"]
refs_x = collect_references_batch(cfg.reference_path[i : i + cfg.batch_size], vae, cfg.image_size)
mask_strategy = cfg.mask_strategy[i : i + cfg.batch_size]
# 4.3. diffusion sampling
old_sample_idx = sample_idx
# generate multiple samples for each prompt
for k in range(cfg.num_sample):
sample_idx = old_sample_idx
video_clips = []
# 4.4. long video generation
for loop_i in range(cfg.loop):
# 4.4 sample in hidden space
batch_prompts = [prompt[loop_i] for prompt in batch_prompts_loops]
# 4.5. apply mask strategy
masks = None
# if cfg.reference_path is not None:
if loop_i > 0:
ref_x = vae.encode(video_clips[-1])
for j, refs in enumerate(refs_x):
if refs is None:
refs_x[j] = [ref_x[j]]
else:
refs.append(ref_x[j])
if mask_strategy[j] is None:
mask_strategy[j] = ""
else:
mask_strategy[j] += ";"
mask_strategy[
j
] += f"{loop_i},{len(refs)-1},-{cfg.condition_frame_length},0,{cfg.condition_frame_length}"
# sampling
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i)
samples = scheduler.sample(
model,
text_encoder,
z=z,
prompts=batch_prompts,
device=device,
additional_args=model_args,
mask=masks, # scheduler must support mask
)
samples = vae.decode(samples.to(dtype))
video_clips.append(samples)
# 4.7. save video
if loop_i == cfg.loop - 1:
if not use_dist or coordinator.is_master():
for idx in range(len(video_clips[0])):
video_clips_i = [video_clips[0][idx]] + [
video_clips[i][idx][:, cfg.condition_frame_length :] for i in range(1, cfg.loop)
]
video = torch.cat(video_clips_i, dim=1)
print(f"Prompt: {batch_prompts_raw[idx]}")
if cfg.prompt_as_path:
sample_name_suffix = batch_prompts_raw[idx]
else:
sample_name_suffix = f"_{sample_idx}"
save_path = os.path.join(save_dir, f"{sample_name}{sample_name_suffix}")
if cfg.num_sample != 1:
save_path = f"{save_path}-{k}"
save_sample(video, fps=cfg.fps // cfg.frame_interval, save_path=save_path)
sample_idx += 1
if __name__ == "__main__":
main()