-
Notifications
You must be signed in to change notification settings - Fork 24
/
imprint_ft.py
335 lines (282 loc) · 12.4 KB
/
imprint_ft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import argparse
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import models
import loader
import numpy as np
from utils import Bar, Logger, AverageMeter, accuracy, mkdir_p, savefig
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data', metavar='DIR', default='CUB_200_2011',
help='path to dataset')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('-b', '--batch-size', default=64, type=int,
metavar='N', help='mini-batch size (default: 64)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--lr', '--learning-rate', default=0.0001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('-c', '--checkpoint', default='imprint_ft_checkpoint', type=str, metavar='PATH',
help='path to save checkpoint (default: imprint_ft_checkpoint)')
parser.add_argument('--model', default='', type=str, metavar='PATH',
help='path to model (default: none)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--random', action='store_true', help='whether use random novel weights')
parser.add_argument('--num-sample', default=1, type=int,
metavar='N', help='number of novel sample (default: 1)')
parser.add_argument('--test-novel-only', action='store_true', help='whether only test on novel classes')
best_prec1 = 0
def main():
global args, best_prec1
args = parser.parse_args()
if not os.path.isdir(args.checkpoint):
mkdir_p(args.checkpoint)
model = models.Net().cuda()
print('==> Reading from model checkpoint..')
assert os.path.isfile(args.model), 'Error: no model checkpoint directory found!'
checkpoint = torch.load(args.model)
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded model checkpoint '{}' (epoch {})"
.format(args.model, checkpoint['epoch']))
cudnn.benchmark = True
# Data loading code
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
novel_dataset = loader.ImageLoader(
args.data, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]),
train=True, num_classes=200,
num_train_sample=args.num_sample,
novel_only=True)
novel_loader = torch.utils.data.DataLoader(
novel_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
train_dataset = loader.ImageLoader(
args.data, transforms.Compose([
transforms.Resize(256),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]),
train=True, num_classes=200,
num_train_sample=args.num_sample)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, sampler=train_dataset.get_balanced_sampler(),
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
loader.ImageLoader(args.data, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]), num_classes=200, novel_only=args.test_novel_only),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
# imprint weights first
imprint(novel_loader, model)
print(' Total params: %.2fM' % (sum(p.numel() for p in model.parameters())/1000000.0))
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=0.94)
title = 'Impriningt + FT'
if args.resume:
print('==> Resuming from checkpoint..')
assert os.path.isfile(args.resume), 'Error: no checkpoint directory found!'
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title, resume=True)
else:
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.'])
if args.evaluate:
validate(val_loader, model, criterion)
return
for epoch in range(args.start_epoch, args.epochs):
scheduler.step()
lr = optimizer.param_groups[0]['lr']
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, lr))
# train for one epoch
train_loss, train_acc = train(train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set
test_loss, test_acc = validate(val_loader, model, criterion)
# append logger file
logger.append([lr, train_loss, test_loss, train_acc, test_acc])
# remember best prec@1 and save checkpoint
is_best = test_acc > best_prec1
best_prec1 = max(test_acc, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer' : optimizer.state_dict(),
}, is_best, checkpoint=args.checkpoint)
logger.close()
logger.plot()
savefig(os.path.join(args.checkpoint, 'log.eps'))
print('Best acc:')
print(best_prec1)
def imprint(novel_loader, model):
batch_time = AverageMeter()
data_time = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
bar = Bar('Imprinting', max=len(novel_loader))
with torch.no_grad():
for batch_idx, (input, target) in enumerate(novel_loader):
# measure data loading time
data_time.update(time.time() - end)
input = input.cuda()
# compute output
output = model.extract(input)
if batch_idx == 0:
output_stack = output
target_stack = target
else:
output_stack = torch.cat((output_stack, output), 0)
target_stack = torch.cat((target_stack, target), 0)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:}'.format(
batch=batch_idx + 1,
size=len(novel_loader),
data=data_time.val,
bt=batch_time.val,
total=bar.elapsed_td,
eta=bar.eta_td
)
bar.next()
bar.finish()
new_weight = torch.zeros(100, 256)
for i in range(100):
tmp = output_stack[target_stack == (i + 100)].mean(0) if not args.random else torch.randn(256)
new_weight[i] = tmp / tmp.norm(p=2)
weight = torch.cat((model.classifier.fc.weight.data, new_weight.cuda()))
model.classifier.fc = nn.Linear(256, 200, bias=False)
model.classifier.fc.weight.data = weight
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
bar = Bar('Training ', max=len(train_loader))
for batch_idx, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
input = input.cuda()
target = target.cuda(non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
model.weight_norm()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(train_loader),
data=data_time.val,
bt=batch_time.val,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
return (losses.avg, top1.avg)
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
bar = Bar('Testing ', max=len(val_loader))
with torch.no_grad():
end = time.time()
for batch_idx, (input, target) in enumerate(val_loader):
# measure data loading time
data_time.update(time.time() - end)
input = input.cuda()
target = target.cuda(non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(val_loader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
return (losses.avg, top1.avg)
def save_checkpoint(state, is_best, checkpoint='checkpoint', filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'model_best.pth.tar'))
if __name__ == '__main__':
main()