mlmemoirs 机器学习初学者 2018-11-12
外国自媒体mlmemoirs根据github、福布斯、CMU官网等信息,整理了一张50个最佳机器学习公共数据集的榜单,为大家分享一下~
作者:mlmemoirs 郭一璞 编译
外国自媒体mlmemoirs根据github、福布斯、CMU官网等信息,整理了一张50个最佳机器学习公共数据集的榜单,为大家分享一下~ 提前说下须知:
一、寻找数据集的意义
根据CMU的说法,寻找一个好用的数据集需要注意一下几点: 数据集不混乱,否则要花费大量时间来清理数据。 数据集不应包含太多行或列,否则会难以使用。 数据越干净越好,清理大型数据集可能非常耗时。 应该预设一个有趣的问题,而这个问题又可以用数据来回答。
二、去哪里找数据集
- Kaggle:爱竞赛的盆友们应该很熟悉了,Kaggle上有各种有趣的数据集,拉面评级、篮球数据、甚至西雅图的宠物许可证。
- UCI机器学习库:最古老的数据集源之一,是寻找有趣数据集的第一站。虽然数据集是用户贡献的,因此具有不同的清洁度,但绝大多数都是干净的,可以直接从UCI机器学习库下载,无需注册。
- VisualData:分好类的计算机视觉数据集,可以搜索~
好了,下面就是那50个数据集了,由于后期加上了一些补充,所以总数已经超过了50。
Labelme:带注释的大型图像数据集。
ImageNet:大家熟悉的ImageNet,女神李飞飞参与创建,同名比赛影响整个计算机视觉界。
LSUN:场景理解与许多辅助任务(房间布局估计,显着性预测等)
MS COCO:同样也是知名计算机视觉数据集,同名比赛每年都被中国人屠榜。
COIL 100 :100个不同的物体在360度旋转的每个角度成像。
视觉基因组:非常详细的视觉知识库。
谷歌开放图像:在知识共享下的900万个图像网址集合“已经注释了超过6000个类别的标签”。
野外标记面:13000张人脸标记图像,用于开发涉及面部识别的应用程序。
斯坦福狗子数据集:20580张狗子的图片,包括120个不同品种。
室内场景识别:包含67个室内类别,15620个图像。
多域情绪分析数据集:一个稍老一点的数据集,用到了来自亚马逊的产品评论。
IMDB评论:用于二元情绪分类的数据集,不过也有点老、有点小,有大约25000个电影评论。
斯坦福情绪树库:带有情感注释的标准情绪数据集。
Sentiment140:一个流行的数据集,它使用160,000条预先删除表情符号的推文。
Twitter美国航空公司情绪:2015年2月美国航空公司的Twitter数据,分类为正面,负面和中性推文。
HotspotQA数据集:具有自然、多跳问题的问答数据集,具有支持事实的强大监督,以实现更易于解释的问答系统。
安然数据集:来自安然高级管理层的电子邮件数据。
亚马逊评论:包含18年来亚马逊上的大约3500万条评论,数据包括产品和用户信息,评级和文本审核。
Google Books Ngrams:Google Books中的一系列文字。
Blogger Corpus:收集了来自blogger.com的681,288篇博文,每篇博文至少包含200个常用英语单词。
维基百科链接数据:维基百科的全文,包含来自400多万篇文章的近19亿个单词,可以按段落、短语或段落本身的一部分进行搜索。
Gutenberg电子书列表:Gutenberg项目中带注释的电子书书单。
Hansards加拿大议会文本:来自第36届加拿大议会记录的130万组文本。
Jeopardy:来自问答节目Jeopardy的超过200,000个问题的归档。
英文垃圾短信收集:由5574条英文垃圾短信组成的数据集。
Yelp评论:Yelp,就是美国的“大众点评”,这是他们发布的一个开放数据集,包含超过500万条评论。
UCI的Spambase:一个大型垃圾邮件数据集,对垃圾邮件过滤非常有用。
Berkeley DeepDrive BDD100k:目前最大的自动驾驶数据集,包含超过100,000个视频,其中包括一天中不同时段和天气条件下超过1,100小时的驾驶体验。其中带注释的图像来自纽约和旧金山地区。
百度Apolloscapes:度娘的大型数据集,定义了26种不同物体,如汽车、自行车、行人、建筑物、路灯等。
Comma.ai:超过7小时的高速公路驾驶,细节包括汽车的速度、加速度、转向角和GPS坐标。
牛津的机器人汽车:这个数据集来自牛津的机器人汽车,它于一年时间内在英国牛津的同一条路上,反反复复跑了超过100次,捕捉了天气、交通和行人的不同组合,以及建筑和道路工程等长期变化。
城市景观数据集:一个大型数据集,记录50个不同城市的城市街景。
CSSAD数据集:此数据集对于自动驾驶车辆的感知和导航非常有用。不过,数据集严重偏向发达国家的道路。
KUL比利时交通标志数据集:来自比利时法兰德斯地区数以千计的实体交通标志的超过10000条注释。
MIT AGE Lab:在AgeLab收集的1,000多小时多传感器驾驶数据集的样本。
LISA:UC圣迭戈智能和安全汽车实验室的数据集,包括交通标志、车辆检测、交通信号灯和轨迹模式。
博世小交通灯数据集:用于深度学习的小型交通灯的数据集。
LaRa交通灯识别:巴黎的交通信号灯数据集。
WPI数据集:交通灯、行人和车道检测的数据集。
MIMIC-III:MIT计算生理学实验室的公开数据集,标记了约40000名重症监护患者的健康数据,包括人口统计学、生命体征、实验室测试、药物等维度。
除了机器学习专用的数据集,还有一些其他的一般数据集,可能很有趣~ 公共政府数据集
Data.gov:该网站可以从多个美国政府机构下载数据,包括各种奇怪的数据,从政府预算到考试分数都有。不过,其中大部分数据需要进一步研究。
食物环境地图集:本地食材如何影响美国饮食的数据。
学校财务系统:美国学校财务系统的调查。
慢性病数据:美国各地区慢性病指标数据。
美国国家教育统计中心:教育机构和教育人口统计数据,不仅有美国的数据,也有一些世界上其他地方的数据。
英国数据服务:英国最大的社会、经济和人口数据集。
数据美国:全面可视化的美国公共数据。
Quandl:经济和金融数据的良好来源,有助于建立预测经济指标或股票价格的模型。
世界银行开放数据:全球人口统计数据,还有大量经济和发展指标的数据集。
国际货币基金组织数据:国际货币基金组织公布的有关国际金融,债务利率,外汇储备,商品价格和投资的数据。
金融时报市场数据:来自世界各地的金融市场的最新信息,包括股票价格指数,商品和外汇。
Google Trends:世界各地的互联网搜索行为和热门新闻报道的数据。
美国经济协会:美国宏观经济数据。
备注:有一些网址需要科学上网才能打开。