forked from lawlite19/MachineLearning_Python
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLinearRegression.py
115 lines (85 loc) · 3.71 KB
/
LinearRegression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#-*- coding: utf-8 -*-
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.font_manager import FontProperties
font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14) # 解决windows环境下画图汉字乱码问题
def linearRegression(alpha=0.01,num_iters=400):
print u"加载数据...\n"
data = loadtxtAndcsv_data("data.txt",",",np.float64) #读取数据
X = data[:,0:-1] # X对应0到倒数第2列
y = data[:,-1] # y对应最后一列
m = len(y) # 总的数据条数
col = data.shape[1] # data的列数
X,mu,sigma = featureNormaliza(X) # 归一化
plot_X1_X2(X) # 画图看一下归一化效果
X = np.hstack((np.ones((m,1)),X)) # 在X前加一列1
print u"\n执行梯度下降算法....\n"
theta = np.zeros((col,1))
y = y.reshape(-1,1) #将行向量转化为列
theta,J_history = gradientDescent(X, y, theta, alpha, num_iters)
plotJ(J_history, num_iters)
return mu,sigma,theta #返回均值mu,标准差sigma,和学习的结果theta
# 加载txt和csv文件
def loadtxtAndcsv_data(fileName,split,dataType):
return np.loadtxt(fileName,delimiter=split,dtype=dataType)
# 加载npy文件
def loadnpy_data(fileName):
return np.load(fileName)
# 归一化feature
def featureNormaliza(X):
X_norm = np.array(X) #将X转化为numpy数组对象,才可以进行矩阵的运算
#定义所需变量
mu = np.zeros((1,X.shape[1]))
sigma = np.zeros((1,X.shape[1]))
mu = np.mean(X_norm,0) # 求每一列的平均值(0指定为列,1代表行)
sigma = np.std(X_norm,0) # 求每一列的标准差
for i in range(X.shape[1]): # 遍历列
X_norm[:,i] = (X_norm[:,i]-mu[i])/sigma[i] # 归一化
return X_norm,mu,sigma
# 画二维图
def plot_X1_X2(X):
plt.scatter(X[:,0],X[:,1])
plt.show()
# 梯度下降算法
def gradientDescent(X,y,theta,alpha,num_iters):
m = len(y)
n = len(theta)
temp = np.matrix(np.zeros((n,num_iters))) # 暂存每次迭代计算的theta,转化为矩阵形式
J_history = np.zeros((num_iters,1)) #记录每次迭代计算的代价值
for i in range(num_iters): # 遍历迭代次数
h = np.dot(X,theta) # 计算内积,matrix可以直接乘
temp[:,i] = theta - ((alpha/m)*(np.dot(np.transpose(X),h-y))) #梯度的计算
theta = temp[:,i]
J_history[i] = computerCost(X,y,theta) #调用计算代价函数
print '.',
return theta,J_history
# 计算代价函数
def computerCost(X,y,theta):
m = len(y)
J = 0
J = (np.transpose(X*theta-y))*(X*theta-y)/(2*m) #计算代价J
return J
# 画每次迭代代价的变化图
def plotJ(J_history,num_iters):
x = np.arange(1,num_iters+1)
plt.plot(x,J_history)
plt.xlabel(u"迭代次数",fontproperties=font) # 注意指定字体,要不然出现乱码问题
plt.ylabel(u"代价值",fontproperties=font)
plt.title(u"代价随迭代次数的变化",fontproperties=font)
plt.show()
# 测试linearRegression函数
def testLinearRegression():
mu,sigma,theta = linearRegression(0.01,400)
print u"\n计算的theta值为:\n",theta
print u"\n预测结果为:%f"%predict(mu, sigma, theta)
# 测试学习效果(预测)
def predict(mu,sigma,theta):
result = 0
# 注意归一化
predict = np.array([1650,3])
norm_predict = (predict-mu)/sigma
final_predict = np.hstack((np.ones((1)),norm_predict))
result = np.dot(final_predict,theta) # 预测结果
return result
if __name__ == "__main__":
testLinearRegression()